Bioinformatics for Genomic Medicine: À¯ÀüüÁ¤º¸ÀÇÇÐ

Ã¥ÀÓ±³¼ö ±èÁÖÇÑ 
°­Àǽ𣠸ÅÁÖ ¿ù¿äÀÏ ¿ÀÈÄ 4:30 ~ 7:30
°­ÀÇ Àå¼Ò ±âÃÊ¿¬±¸µ¿ 507È£
°øÁö»çÇ× B4GM2003 °Ô½ÃÆÇ

Schedule 2003

¡¡ Date Type¡¡ Issues ¡¡ Lecturer Readings b4gm@home
1 03¿ù 03ÀÏ Administrivia
2 03¿ù 11ÀÏ °­ÀÇ Bioinformatics and genomic medicine ±èÁÖÇÑ BGM, DC
3 03¿ù 17ÀÏ °­ÀÇ Biomolecular databases ±èÁÖÇÑ DBSyserror, GeneCards, MIPS Linux
Ãʺù°­Á Programs for Genomics Application, NHGRI ÇϹöµåÀÇ´ë °ø¼®¿ø
½Ç½À What you should know about Linux. (¹ÚÂùÈñ)
4 03¿ù 24ÀÏ Ãʺù°­Á Microarray technologies ¼­¿ï´ë ¹Ú¿õ¾ç Shena, Brown, Pathology

Perl, Python

°­ÀÇ Genomic technologies ±èÁÖÇÑ
½Ç½À Perl/Python programming (±èÁöÈÆ/Á¤ÈñÁØ)
5 03¿ù 31ÀÏ °­ÀÇ Using Genomic Databases ±èÁÖÇÑ EST
SAGE,
RT-PCR,
Annotation
print in your finger exercise!

Ãʺù°­Á EST analysis and Genome Annotation ÀÌÈ­¿©´ë ÀÌ»óÇõ
½Ç½À Perl/Python programming (±èÁöÈÆ/Á¤ÈñÁØ)
6 04¿ù 07ÀÏ °­ÀÇ Gene Finding ±èÁÖÇÑ review
canwe?
application
semanticWeb

¡¡

Ãʺù°­Á XML for Bioinformatics ¾ÆÁÖ´ë ±èÇüµµ
½Ç½À Databasing expression with XML (¹ÚÁö¿¬)
7 04¿ù 14ÀÏ Ãʺù°­Á Genome Annotation ±èÁÖÇÑ maReview
YH_Yang
Churchill
Quackenbush
R-tutorial -> print in your finger exercise!
°­ÀÇ Statistical issues in microarray data analysis ±èÈ£
½Ç½À R-programming (±èÁöÈÆ)
8 04¿ù 21ÀÏ °­ÀÇ Normalization and differential expression ±èÁÖÇÑ

ksshim 
bioinfo 
shho

¡¡
Ãʺù°­Á DataminingÀÇ ÀÌÇØ KAIST È£½ÂÈñ
½Ç½À Writing term project proposal (¹ÚÂùÈñ)
9 04¿ù 28ÀÏ ¡¡ Term project proposal & Beer

±è¼±¿µ: ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ÀÚ·áºÐ¼®¹æ¹ý¿¡ °üÇÑ °íÂû
À¯¼ö¿µ: CDA  ¹®¼­¿Í °ü·Ã Genes, DrugsÀÇ ÅëÇÕ °Ë»ö
±èÁöÈÆ: Evaluation of methodology for identification of genes with cell cycle-coupled transcription
±èÀ±Èñ: Application to use Database after Statistical Analysis for cDNA microarray data
ÁöÇöÁÖ, Á¤ÁöÀº: The method of data processing for morphologic study
Á¤ÈñÁØ: BioSVG
ÃÖÇý·É: °¢ÁúÇü¼º¼¼Æ÷ÀÇ cryopreservation¿¡ °üÇÑ ¿¬±¸
¹ÚÂùÈñ: Major database integration

±èºÀÁ¶: Differential gene expression of heterozygous mice for the TGF-¥â type II receptor in experimental diabetic nephropathy model 
½ÉÀçÇö: Protein Hydrophobicity °è»ê¿¡¼­ Window size¿Í Weight ¼³Á¤
Áø¿µ¿ì: ¼±·®¿¡ µû¸¥ ¹æ»ç¼± È¿°úÀÇ À¯ÀüÀÚ ¹ßÇö ºñ±³

¼ö°­»ýÀº 6¿ù 23ÀϱîÁö ÀÚ½ÅÀÇ Term project¸¦ A4¿ëÁö 10¸Å À̳»ÀÇ ¼Ò³í¹®(Term paper)¸¦ Á¦ÃâÇÕ´Ï´Ù.
À§ÀÇ ¸í´Ü¿¡¼­ ºüÁö½Å ºÐÀº ÇÐÁ¡ Ãëµæ¿¡ ºÒÀÌÀÍÀÌ ¸Å¿ì Å©¹Ç·Î °­»ç¿Í ÀdzíÇϽñ⠹ٶø´Ï´Ù. 

10 05¿ù 05ÀÏ Children's day ¾î¸°ÀÌ
11 05¿ù 12ÀÏ °­ÀÇ Unsupervised learning  ±èÁÖÇÑ Eisen
Yeung
Ŭ·¯½ºÅ͸µ
(data set)

print in yfe!
½Ç½À clustering (ÀÌÁ¤¾Ö)
12 05¿ù 19ÀÏ °­ÀÇ Differential expression / Supervised learning Newton
Tusher
Baldi
Churchill
ann/c5
print in your finger exercise!
Ãʺù°­Á ½Å°æȸ·Î¸ÁÀÇ ¹è°æ´ÙÃþÆÛ¼ÁÆ®·Ð ¸ðÇü ¼¼Á¾´ë

Á¶¹ÎÈ£

½Ç½À ann/c5 (À±Çý¼º)
13 05¿ù 26ÀÏ computational statistics & numerical analysis º£ÀÌÁî
HMM
Ãʺù°­Á em/gibbs/mcmc/hmm (±èÁöÈÆ) ¼­¿ï´ë Á¤Å¼ö
14 06¿ù 02ÀÏ °­ÀÇ Proteomics ±è¿µ¼ö

¡¡

½Ç½À ¡¡
15 06¿ù 09ÀÏ ==================================================
Term project presentation - I

- ±èÁöÈÆ: Evaluation of methodology for identification of genes with cell cycle-coupled transcription
¡¡

16 06¿ù 16ÀÏ ==================================================
Term project presentation - II

- À¯¼ö¿µ: CDA  ¹®¼­¿Í °ü·Ã Genes, DrugsÀÇ ÅëÇÕ °Ë»ö
- ±èÀ±Èñ: Application to use Database after Statistical Analysis for cDNA microarray data
- ÁöÇöÁÖ, Á¤ÁöÀº: The method of data processing for morphologic study
- ÃÖÇý·É: °¢ÁúÇü¼º¼¼Æ÷ÀÇ cryopreservation¿¡ °üÇÑ ¿¬±¸

==================================================
¼ö°­»ýÀº 6¿ù 18ÀϱîÁö ÀÚ½ÅÀÇ Term project¸¦ A4¿ëÁö 10¸Å À̳»ÀÇ ¼Ò³í¹®(Term paper)¸¦ Á¦ÃâÇÕ´Ï´Ù.

Administrivia

ù³¯Àº °­ÀÇ°¡ ¾ø½À´Ï´Ù.

3¿ù 10ÀÏ °­ÀÇ´Â (¹Ì±¹ ÇÐȸ Âü¼®°ü°è·Î) À̺z³¯ÀÎ 3¿ù 11ÀÏ¿¡ ½ÃÀÛÇÕ´Ï´Ù. (¿ÀÈÄ 4:30)
ÇàÁ¤ÀûÀÎ ³»¿ëµµ À̳¯ ´Ù·ç¾î Áý´Ï´Ù.

º» °­Á´ ¼ö°­»ýÀÇ ¾à°£ÀÇ ÄÄÇ»ÅÍ ÇÁ·Î±×·¡¹Ö Áö½ÄÀ» ¿äÇÕ´Ï´Ù. ÇÁ·Î±×·¡¹ÖÀÌ ºÎ´ã½º·¯¿î Çлýµµ ÀÖÀ¸¸®¶ó
»ý°¢ÇÕ´Ï´Ù¸¸, ÇÁ·Î±×·¡¹ÖÀ» ÀüÇô ÇÒ ¼ö ¾ø´Ù¸é º» °­Á Àüü°¡ ¹«ÀǹÌÇÏ´Ù°í ¹ÏÀ¸¹Ç·Î, ÀÌ´Â Çʼö»çÇ×ÀÔ´Ï´Ù.
ù µÎ ÁÖ »çÀÌ¿¡ Á¶±³ÀÇ ½Ç½ÀÀ» ÅëÇؼ­ ¸®´ª½º¿Í, Perl, Python ¿¡ ´ëÇÑ ÃÖ¼ÒÇÑÀÇ °­Á¸¦ °èȹÇÏ°í ÀÖ½À´Ï´Ù.
ÀÌ ±â°£µ¿¾È¿¡ ½ºÅ©¸³Æ®¼öÁØÀÇ ÇÁ·Î±×·¡¹Ö ±â¹ýÀ» ÀÍÈ÷½Ã±â ¹Ù¶ø´Ï´Ù.

3ÇÐÁ¡ °­ÁÂÀÔ´Ï´Ù. Æò°¡´Â 

°­Á¿¡ Ãâ¼®ÇϽñâ Àü¿¡ ¹Ì¸® Readings¸¦ ÀÐ°í ¿À½Ê½Ã¿À.

½ÃÇèÀº ¾ø½À´Ï´Ù.

Term project and paper

9¹ø° ½Ã°£ÀÎ 4¿ù 28ÀÏ¿¡´Â À̹ø ÇÑ Çб⵿¾È ¾î¶² ÇÁ·ÎÁ§Æ®¸¦ ÁøÇàÇÒÁö ¹ßÇ¥ÇÕ´Ï´Ù. Ç¥ÁöÆ÷ÇÔ 10¸Å À̳»
(¹®ÀåÀº Àå´ç 8ÁÙ À̳»)ÀÇ ½½¶óÀ̵带 ÁغñÇؼ­ 10ºÐ°£ ¿¬±¸ÀÇ Motivation, Problem definition, My approach
to solve the problem. À» Á¦¾ÈÇÕ´Ï´Ù. ÇлýÀº ÀÚ½ÅÀÇ Term project Áغñ¸¦ À§Çؼ­ 4¿ù 1ÀÏ ÀÌÈĺÎÅÍ °­»ç
ȤÀº Á¶±³¿Í »óÀÇÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù. Æò°¡ÀÇ ÁÖ¾ÈÁ¡Àº ¹®Á¦ÀÇ µµÃâ°úÁ¤°ú ¹®Á¦Á¦±âÀÇ ÇÕ¸®¼ºÀÔ´Ï´Ù.

16¹ø°(6/16) ¹× 17¹ø°(6/23)Àº ¾à 25ºÐ¿¡ °ÉÃļ­ ÀÚ½ÅÀÇ Term project presentationÀ» ÇÕ´Ï´Ù.

¼ö°­»ýÀº 6¿ù 23ÀϱîÁö ÀÚ½ÅÀÇ Term project¸¦ A4¿ëÁö 10¸Å À̳»ÀÇ ¼Ò³í¹®(Term paper)¸¦ Á¦ÃâÇÕ´Ï´Ù.

Textbooks, recommended

Bioinformatics, Mount
Genomes, Brown
Bioinformatics, Baxevanis
Postgenome informatics, Kinehasa

Readings

comming soon

Program

Secure Shell: