<Supplemental Site>
¡¡
Comprehensive evaluation of matrixfactorization methods for
the analysis of DNA microarray gene expression data
Mi Hyeon Kim1, Hwa Jeong Seo2, Je-Gun Joung1,3,4, Ju Han Kim1,3*
Last Modified: June. 29, 2011
ABSTRACTS
Supplemental Material
¡¡
1. Various clustering evaluation measures
1.1 Leukemia dataset
1.3 Iris dataset
1.5 Mouse dataset
¡¡
2. Class assignment in Iris dataset
- Table of class assignment using six Matrix Factorization methods and K-means clustering in Iris dataset
3. Weighted P-value of significantly enriched terms
- Plots of weighted P-value resulting from enrichment analysis for each cluster
3.2 Mouse dataset
¡¡
4. P-values for significantly enriched terms
- Plots of log(P-value) using six Matrix Factorization methods and K-means clustering.
- Each plot is represented for Gene Ontology (GO) category, KEGG and Biocarta
¡¡
4.1 ALL cluster for Leukemia dataset
4.2 AML cluster for Leukemia dataset
4.3 Cluster 1 for Medulloblastoma dataset
4.4 Cluster 2 for Medulloblastoma dataset
4.5 Cluster 1 for Fibroblast dataset
4.6 Cluster 2 for Fibroblast dataset
4.7 Cluster 3 for Fibroblast dataset
4.8 Cluster 4 for Fibroblast dataset
4.9 Cluster 5 for Fibroblast dataset
4.10 Cluster 1 for Mouse dataset
4.11 Cluster 2 for Mouse dataset
¡¡
5. Twenty dominant genes in each subtype
- Table of twenty dominant genes in each subtype using BSNMF
¡¡
Download
¡¡
** R code
2. Orthogonal matrix factorization
3. Independent component analysis
4. Non-negative matrix factorization
5. Clustering evaluation measures
¡¡
¡¡
** MATLAB code
1. Bi-directional Non-negative matrix factorization
¡¡