¼¿ï´ëÇб³ÀÇ°ú´ëÇÐ Á¤º¸ÀÇÇÐ½Ç Á¦4ȸ Á¤º¸ÀÇÇÐ ¼¼¹Ì³ª
½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡ÇÙ½É ¿¬±¸¼¾ÅÍ ÀÚ·áºÐ¼® ¿÷¼¥
R for Bioinformatics and Biomedicine
ÀÓ»ó ÀÇ·áÁ¤º¸¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ÅëÇպм®¿¡¼ ¿Ã¹Ù¸¥ Åë°èÇÐÀû µµ±¸ »ç¿ëÀÇ Á߿伺Àº ¾Æ¹«¸®
°Á¶Çصµ Áö³ªÄ¡Áö ¾Ê½À´Ï´Ù. °ø°³ ¼ÒÇÁÆ®¿þ¾îÀÎ R statistical package´Â dzºÎÇÑ
Åë°èºÐ¼® ¶óÀ̺귯¸®¿Í ÀÚ·á󸮸¦ À§ÇÑ ÄÄÇ»ÅÍ ÇÁ·Î±×·¡¹Ö ȯ°æ ¹× ¼öÁØ ³ôÀº ±×·¡ÇÁ ±×¸®±â¸¦ Áö¿øÇÕ´Ï´Ù. ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнǿ¡¼´Â
¹ÙÀÌ¿ÀÁ¤º¸Çаú ÀÇ°úÇÐ ºÐ¾ß¿¡¼ RÀÇ È°¹ßÇÑ º¸±ÞÀ» À§ÇÑ ½Ç½À ¿÷¼¥À» ¸¶·ÃÇß½À´Ï´Ù. º» ±³À°°úÁ¤ÀÌ ½ÇÁúÀûÀÎ »ý¸íÀÇ°úÇÐ
µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ºÐ¼®À» À§ÇÑ R È°¿ëÀÇ ±âÃÊ°¡ µÇ±â¸¦ ±â¿øÇÕ´Ï´Ù.
- 2012³â 12¿ù ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå ±èÁÖÇÑ
ÀÏ ½Ã : 2013³â
2¿ù
14ÀÏ(¸ñ)
~ 15ÀÏ(±Ý),
¿ÀÀü 9½Ã ~ ¿ÀÈÄ 5½Ã
Àå ¼Ò : ¼¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼°ü 3Ãþ Àü»ê½Ç½À½Ç
ÁÖ ÃÖ : ¼¿ï´ë ½Ã½ºÅÛ¹ÙÀÌ¿ÀÁ¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ
ÁÖ °ü : ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ
µî ·Ï : 50¸í Á¦ÇÑ, ÀÌƲ °Á µî·Ïºñ
100,000¿ø, Áᫎ ¹× °ÀDZ³Àç Á¦°ø
¡á ÇÁ·Î±×·¥ (Day 1, 14ÀÏ)
½Ã °£
|
ÁÖ Á¦ |
° »ç |
9:00 ~ 9:10 |
µî
·Ï |
9:10 ~ 9:30 |
Introduction
to R |
±èÁÖÇÑ |
9:30 ~ 10:40 |
Starting with
R
- R Installation, workspace
-
Data type
-
Basic R functions
-
Data type conversion |
ÀÓÀçÇö, ¼Èñ¿ø |
10:50 ~ 12:00 |
Data
manipulation with R
- Importing/exporting data (text, SPSS, excel <-> R)
-
Missing values
-
Data management: sorting, merging, reshaping
-
Basic visualization |
Á¤Á¦±Õ,
ÀÓÀçÇö |
12:00 ~ 13:10 |
Áß ½Ä |
13:10 ~ 14:20 |
Statistical Analysis with Biomedical Data I
- Distributions
- Parametric tests
- Non-Parametric stats |
¼Õ°æ¾Æ,
À±ÁØÈñ |
14:30 ~ 15:40 |
Statistical Analysis with Biomedical Data II
- Correlation
- Regression
- ANOVA |
¼Õ°æ¾Æ,
À±ÁØÈñ |
15:50 ~ 17:00 |
Advanced R
graphics
- Line Plots
- Bar charts
- Histograms
- Scatter plot
- etc |
±èµµ±Õ,
¼Èñ¿ø |
¡á ÇÁ·Î±×·¥
(Day 2, 15ÀÏ)
½Ã °£
|
ÁÖ Á¦ |
° »ç |
9:10 ~ 9:30 |
Machine
Learning Algorithms for Biomedical Informatics |
±èÁÖÇÑ |
9:30 ~ 10:40 |
Microarray Data Analysis I
-
Introduction to Microarray Data
-
Normalization methods |
À̼ö¿¬,
°º´Èñ |
10:50 ~ 12:00 |
Microarray Data Analysis II
- Identifying DEG: t-test, SAM
-
Volcano plot
-
FDR |
À̼ö¿¬,
¹é¼ö¿¬ |
12:00 ~ 13:10 |
Áß ½Ä |
13:10 ~ 14:20 |
Classification using R
-
K-Nearest Neighbor
- Support Vector Machine
- Logistic regression
- Feature selection |
±èµµ±Õ,
¼Èñ¿ø |
14:30~ 15:40 |
Evaluation
and Validation
- Cross validation
- Train/validation/test set split
- Empirical p-value, permutation test
- Multiple testing
- Mean squared error rate |
Á¤Á¦±Õ,
¹é¼ö¿¬ |
15:50 ~ 17:00 |
Case
study: association of BRCA1 and BRCA2 mutations with
survival in ovarian cancer (JAMA 2011)
- DEG extraction from RNA-seq data using TRAPR
- Clustering (K-means, hierarchical)
- Correlation analysis between methylation and expression
data
- Survival analysis |
¼Õ°æ¾Æ,
ÀÓÀçÇö |
Àå ¼Ò : ¼¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼°ü 3Ãþ Àü»ê½Ç½À½Ç
±³ Åë : ÁöÇÏö 4È£¼± ÇýÈ¿ª 3¹ø Ãⱸ 50m
ÁÖÂ÷Àå : Â÷¸¦ °¡Á®¿À½Ã´Â ºÐµéÀº, º´¿ø ÁÖÂ÷Àå¿¡ ÁÖÂ÷¸¦ ÇÏ½Ã¸é µÇ°í, Á¾ÀÏ ÁÖÂ÷±Ç (1,500¿ø)À» ÆǸÅÇÏ¿À´Ï,
ÇÊ¿äÇϽŠºÐÀº ±¸ÀÔÇÏ½Ã¸é µË´Ï´Ù.
¡¡
|