¼­¿ï´ëÇб³ÀÇ°ú´ëÇÐ Á¤º¸ÀÇÇÐ½Ç Á¦5ȸ Á¤º¸ÀÇÇÐ ¼¼¹Ì³ª
½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡ÇÙ½É ¿¬±¸¼¾ÅÍ ÀÚ·áºÐ¼® ¿÷¼¥

   R for Bioinformatics and Biomedicine

ÀÓ»ó ÀÇ·áÁ¤º¸¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ÅëÇպм®¿¡¼­ ¿Ã¹Ù¸¥ Åë°èÇÐÀû µµ±¸ »ç¿ëÀÇ Á߿伺Àº ¾Æ¹«¸® °­Á¶Çصµ Áö³ªÄ¡Áö ¾Ê½À´Ï´Ù. °ø°³ ¼ÒÇÁÆ®¿þ¾îÀÎ R statistical package´Â dzºÎÇÑ Åë°èºÐ¼® ¶óÀ̺귯¸®¿Í ÀÚ·á󸮸¦ À§ÇÑ ÄÄÇ»ÅÍ ÇÁ·Î±×·¡¹Ö ȯ°æ ¹× ¼öÁØ ³ôÀº ±×·¡ÇÁ ±×¸®±â¸¦ Áö¿øÇÕ´Ï´Ù. ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнǿ¡¼­´Â ¹ÙÀÌ¿ÀÁ¤º¸Çаú ÀÇ°úÇÐ ºÐ¾ß¿¡¼­ RÀÇ È°¹ßÇÑ º¸±ÞÀ» À§ÇÑ ½Ç½À ¿÷¼¥À» ¸¶·ÃÇß½À´Ï´Ù. º» ±³À°°úÁ¤ÀÌ ½ÇÁúÀûÀÎ »ý¸íÀÇ°úÇÐ µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ºÐ¼®À» À§ÇÑ R È°¿ëÀÇ ±âÃÊ°¡ µÇ±â¸¦ ±â¿øÇÕ´Ï´Ù.

-  2013³â 1¿ù ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå ±èÁÖÇÑ

¡á ÀϽà ¹× Àå¼Ò

ÀÏ ½Ã : 2013³â 3¿ù 14ÀÏ(¸ñ) ~ 15ÀÏ(±Ý), ¿ÀÀü 9½Ã ~ ¿ÀÈÄ 5½Ã                   

Àå ¼Ò : ¼­¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼­°ü 3Ãþ Àü»ê½Ç½À½Ç
ÁÖ ÃÖ : ¼­¿ï´ë ½Ã½ºÅÛ¹ÙÀÌ¿ÀÁ¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ
ÁÖ °ü : ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ
µî ·Ï : 50¸í Á¦ÇÑ, ÀÌƲ °­Á µî·Ïºñ 100,000¿ø, Áᫎ ¹× °­ÀDZ³Àç Á¦°ø

¡á ÇÁ·Î±×·¥ (Day 1, 14ÀÏ)

½Ã °£

ÁÖ Á¦ °­ »ç
9:00 ~ 9:10

µî  ·Ï

9:10 ~ 9:30 Introduction to R ±èÁÖÇÑ
9:30 ~ 10:40 Starting with R
- R Installation, workspace

- Data type
- Basic R functions
- Data type conversion
ÀÓÀçÇö, ¼­Èñ¿ø
10:50 ~ 12:00 Data manipulation with R
- Importing/exporting data (text, SPSS, excel <-> R)

- Missing values
- Data management: sorting, merging, reshaping
- Basic visualization
ÀÓÀçÇö, ±èÇýÇö
12:00 ~ 13:10 Áß  ½Ä 
13:10 ~ 14:20

Statistical Analysis with Biomedical Data I
- Distributions

- Parametric tests

- Non-Parametric stats

¹ÚÂùÈñ, ÀÓ¿µ±Õ
14:30 ~ 15:40

Statistical Analysis with Biomedical Data II
- Correlation
- Regression
- ANOVA

¹ÚÂùÈñ, ±èÇýÇö
15:50 ~ 17:00

Advanced R graphics
- Line Plots
- Bar charts
- Histograms
- Scatter plot
- etc

¼­Èñ¿ø, °íÀμ®

¡á ÇÁ·Î±×·¥ (Day 2, 15ÀÏ)

½Ã °£

ÁÖ Á¦ °­ »ç
9:10 ~ 9:30 Machine Learning Algorithms for Biomedical Informatics ±èÁÖÇÑ
9:30 ~ 10:40 Microarray Data Analysis I
-
Introduction to Microarray Data
- Normalization methods
À̼ö¿¬(s), ¹é¼ö¿¬
10:50 ~ 12:00 Microarray Data Analysis II
- Identifying DEG: t-test, SAM

- Volcano plot
- FDR
À̼ö¿¬(s), ¹é¼ö¿¬
12:00 ~ 13:10 Áß  ½Ä 
13:10 ~ 14:20

Classification using R
-
K-Nearest Neighbor
- Support Vector Machine

- Logistic regression
- Feature selection

À̼ö¿¬, ¼­Èñ¿ø
14:30~ 15:40

Evaluation and Validation
- Cross validation
- Train/validation/test set split
- Empirical p-value, permutation test
- Multiple testing
- Mean squared error rate

À̼ö¿¬(s), ¹é¼ö¿¬
15:50 ~ 17:00

Case study: association of BRCA1 and BRCA2 mutations with survival in ovarian cancer (JAMA 2011)
- DEG extraction from RNA-seq data using TRAPR
- Clustering (K-means, hierarchical)
- Correlation analysis between methylation and expression data
- Survival analysis

ÀÓÀçÇö, À̼ö¿¬(s)


Àå ¼Ò : ¼­¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼­°ü 3Ãþ Àü»ê½Ç½À½Ç
±³ Åë
: ÁöÇÏö 4È£¼± ÇýÈ­¿ª 3¹ø Ãⱸ 50m
ÁÖÂ÷Àå
: Â÷¸¦ °¡Á®¿À½Ã´Â ºÐµéÀº, º´¿ø ÁÖÂ÷Àå¿¡ ÁÖÂ÷¸¦ ÇÏ½Ã¸é µÇ°í, Á¾ÀÏ ÁÖÂ÷±Ç (1,500¿ø)À» ÆǸÅÇÏ¿À´Ï, ÇÊ¿äÇϽŠºÐÀº ±¸ÀÔÇÏ½Ã¸é µË´Ï´Ù.

¡¡