ÀÏ ½Ã | 2011³â 8¿ù 22ÀÏ(¿ù)- 26ÀÏ(±Ý)
Àå ¼Ò | ¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦
ÁÖ °ü | ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ (SBI-NCRC)
ÁÖ ÃÖ |
´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ
Genome Data Analysis
WorkshopÀ» °³ÃÖÇϸç
¾È³çÇϽʴϱî?
¹ÙÀÌ¿À-À¯Àüü Á¤º¸ÀÇÇÐÀÇ Åµ¿Àº 1980³â´ë·Î »ý°¢µË´Ï´Ù. À¯Àüü Á¤º¸ ºÐ¼®ÀÇ ±âº»ÀûÀÎ
°³³äµéÀÌ Çü¼ºµÈ ½Ã±â¿´½À´Ï´Ù. 2003³â ¿Ï¼ºµÈ Àΰ£À¯Àüü»ç¾÷Àº °¡Àå Áß¿äÇÑ ¼º°ú¿´´Ù°í ÇÒ ¼ö ÀÖ½À´Ï´Ù. 1995³â DNA
¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¼úÀÇ °³¹ßÀº BT¿Í ITÀÇ À¶ÇÕÀÌ ÁøÁ¤À¸·Î ÀÇÇп¡ Àû¿ë°¡´ÉÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀÔÁõÇϱ⠽ÃÀÛÇß½À´Ï´Ù.
¸¾¸¶ÇÁ¸°Æ®(MamaPrint)³ª Ƽ½´¾îºê¿À¸®Áø(Tissue of Origin)Àº °³Àκ° ¸ÂÃãÀÇÇÐÀ» °¡½ÃÈÇß°í, ¿ÍÆĸ° ¿¬±¸·Î
´ëÇ¥µÇ´Â ¾à¹°À¯Àüü ¸ÂÃãÀÇÇÐÀº ¸ðµç ¾à¹°Ä¡·áÀÇ Æз¯´ÙÀÓÀ» ±Ùº»ÀûÀ¸·Î º¯È½ÃÅ°°í ÀÖ½À´Ï´Ù.
±× ±â°£ °¡Àå ³î¶ø°Ô ¹ß´ÞÇÑ ±â¼úÀº ¿ª½Ã Â÷¼¼´ë¿°±â¼¿°áÁ¤(NGS, Next
Generation Sequencing)ÀÔ´Ï´Ù. ¿¬±¸ÀÚµéÀº ±×°£ÀÇ Á¾º° ºÐ¼®À̳ª Áý´Ü¿¬±¸ÀÇ ÇѰ踦 ¹þ¾î³ª ÁøÁ¤À¸·Î °³ÀÎÀÇ
»ý¸íÁ¤º¸¸¦ ³¹³¹ÀÌ ¹àÈ÷°í À̸¦ ÅëÇØ ÀÇÇÐÀÇ »õ ÁöÆòÀ» ¿ ¼ö ÀÖ´Ù´Â È®½ÅÀ» °®°Ô µÇ¾ú½À´Ï´Ù. ¾Ï À¯Àüü´Â ¸ðµç ¾ÏÀº ¼·Î
´Ù¸£´Ù´Â °ÍÀ» Áõ¸íÇÏ¸ç ¸ÂÃãÄ¡·á¸¦ Ã˹߽ÃÄ×°í, Ç»Àü À¯ÀüÀÚ¿Í °°Àº ¾Ï ƯÀÌ ¹°ÁúÀÇ ¹ß°ßÀº °ÅÀÇ ºÎÀÛ¿ëÀÌ ¾ø´Â ¾Ï Ä¡·áÁ¦¸¦
°¡´ÉÇÏ°Ô ÇÏ¿© ÀÌÁ¦ ¾ÏÀº ¸¸¼ºÁúȯ¿¡ ºÒ°úÇÒ °ÍÀ̶ó°í ¿¹»óµË´Ï´Ù.
°ú°Å ÇϳªÇϳªÀÇ Á¤º¸¸¦ ¿¬±¸ÀÚÀÇ ¼Õ¶¡À¸·Î ¾ò´ø ½Ã´ë¿¡´Â ÀÚ·áȹµæÀÌ °¡Àå ¾î·Æ°í °¡Ä¡ÀÖ´Â
ÀÛ¾÷À̾úÁö¸¸ ¿À´Ã³¯ÀÇ ´ë·® »ý¸íÁ¤º¸ ȹµæ±â¼úÀÇ ¹ß´ÞÀº ¿¬±¸ÀÇ º´¸ñÀ» ÀÚ·áȹµæ¿¡¼ ÀÚ·áó¸® ¹× Çؼ®À¸·Î ¿Å°Ü ³õ¾Ò½À´Ï´Ù. ÃÖ±Ù
ºÐ¼®¿¡ ÀÇÇÏ¸é ´ëÇü À¯ÀüüÁ¤º¸ ¼¾ÅÍ¿¡¼ °³¹ßµÇ¾î¿Â ºÐ¼®¹æ¹ý·Ð º¸´Ù´Â ½ÇÁ¦ ÇöÀå Àû¿ë¿¡ ÇÊ¿äÇÑ °³º° ºÐ¼®¹æ¹ý·ÐÀÇ Çʿ伺ÀÌ ½Ã±ÞÈ÷
´ëµÎµÇ°í ÀÖ´Ù°í ÇÕ´Ï´Ù. ÀÌ°ÍÀº ±×°£ÀÇ ¿¬±¸¼º°úµéÀÌ ½ÇÁ¦ ¸ÂÃãÀÇÇÐÀÇ ÇöÀå¿¡¼ ³¹³¹ÀÌ ½ÇÇöµÇ´Â ¸ð½ÀÀ»
ÀǹÌÇÕ´Ï´Ù.
´ëºÎºÐÀÇ »ý¸í°úÇÐÀÚ³ª ÀÇÇÐÀÚ¿¡°Ô ´ë±Ô¸ð ¹ÙÀÌ¿À À¯Àüü Á¤º¸µéÀº ´Ù·ç±âµµ Èûµé°í, Á¤º¸Ã³¸®³ª
ºÐ¼®, ³ª¾Æ°¡ ½ÇÁúÀû Çؼ®Àº ³Ñ±â Èûµç À庮ÀÌ µÇ¾ú½À´Ï´Ù. ´õ±¸³ª ¼¿Á¤º¸, ¹ßÇöÁ¤º¸, ¿¡ÇÇÁö³ð Á¤º¸, Á¤º¸Ç¥ÁØ ¹× ºÐÀÚ»ý¹°ÇÐ
µ¥ÀÌÅͺ£À̽º¿Í Æнº¿þÀÌ, ¿ÂÅç·ÎÁö µî ÇÊ¿äÇÑ ÁÖÁ¦ÀÇ ¸ñ·ÏÀº °è¼Ó ±æ¾îÁ® °¡°í ÀÖ½À´Ï´Ù. ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнǰú ¼¿ï´ë ½Ã½ºÅÛ
¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡Çٽɿ¬±¸¼¾ÅÍ¿¡¼´Â Ãʺ¸ÀÚµµ Á¢±ÙÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ À¯Àüü µ¥ÀÌÅÍ ºÐ¼®ÀÇ Àü¹ÝÀûÀÎ ±âÃÊÁö½ÄÀ» ¿¬½ÀÇÏ°í, ¿¬±¸
»Ó ¾Æ´Ï¶ó ¸ÂÃãÀÇ·á ¹× »ê¾÷¿¡ ÀÀ¿ë°¡´ÉÇÑ ³»¿ëÀ¸·Î GDA (Genome Data Analysis) ¿÷¼¥À» °³¼³Çß½À´Ï´Ù. º»
¿÷¼¥À» ÅëÇØ ½Ç¿ëÀûÀÎ À¯Àüü Á¤º¸ ºÐ¼®ÀÇ ¿ª·®À» °ÈÇÏ´Â ±âȸ°¡ µÇ½Ã±â¸¦ ±â´ëÇÏ¸ç ¸¹Àº °ü½É°ú Âü¿©¸¦ ºÎŹµå¸³´Ï´Ù.
2011³â
6¿ù, ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå ±è ÁÖ ÇÑ
|
|
°Á ÀÏÁ¤
DAY 1: Advanced Microarray Data Analysis
|
°ÁÂ I (8¿ù 22/29ÀÏ):
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:20
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:20 ~ 9:40
|
Advanced Microarray Data Analysis |
±èÁÖÇÑ ±³¼ö
|
9:40 ~ 10:30
|
Gene Expression Analysis
- Differential Expression Analysis
- Clustering Analysis
- Classification Analysis
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
10:40 ~ 12:00
|
½Ç ½À I: t-test, SAM, ANOVA, FDR
KNN, SOM, Graph-based Algorithms
LDA, DTs, SVMs
|
³ª¿µÁö, À̼ö¿¬
|
12:00 ~ 13:00
|
Áß ½Ä
|
13:00 ~ 13:50
|
Gene Ontology & Pathway Analysis
- GO Enrichment Analysis
- Pathway Enrichment Analysis
- Biological Interpretation
|
ÃßÀμ± ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)
|
14:00 ~ 15:20
|
½Ç ½À II: Biological interpretation of gene
expression data with BioLattice, David
|
Á¤ÈñÁØ, ¹ÚÀ¯¶û
|
15:30 ~ 16:20
|
Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Set Database
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction
|
Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
16:30 ~ 17:50
|
½Ç ½À III: Gene Set Enrichment Analysis
Cox-PH, Log Rank Test
|
±èµµ±Õ, ¼Èñ¿ø
|
DAY 2: Next Generation Sequencing, Useful Applications
|
°ÁÂ II (8¿ù 23/30ÀÏ):
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:20
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:20 ~ 9:40
|
Next Generation Sequencing, Useful Applications
|
±èÁÖÇÑ ±³¼ö
|
9:40 ~ 10:30
|
NGS Platforms and Applications
Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications
|
ÀÌȯ¼® ¹Ú»ç
(¸¶Å©·ÎÁ¨)
|
10:40 ~ 12:00
|
½Ç ½À I: NGS Data Processing
NGS Sequence Alignment
NGS Visualization Tools
|
³ª¿µÁö, À±¼±¹Î
|
12:00 ~ 13:00
|
Áß ½Ä
|
13:00 ~ 13:50
|
Exome Sequencing Analysis
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation
|
ÀÌÁ¾Àº ¹Ú»ç
(DNA Link)
|
14:00 ~ 15:20
|
½Ç ½À II: SNP and Indel Identification
Variant Analysis and Annotation
|
¹ÚÂùÈñ, À±ÁØÈñ
|
15:30 ~ 16:20
|
RNA-Seq Data Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- Noncoding RNAs & NATs Identification
- Differentially Expressed Genes Identification
|
Á¤Á¦±Õ ¹Ú»ç
(¼¿ï´ë ÀÇ°ú´ëÇÐ)
|
16:30 ~ 17:50
|
½Ç ½À III: RNA-Seq Gene Expression Analysis
|
À̼ö¿¬, Á¤Á¦±Õ
|
DAY 3: Network Biology, Sequence, Pathway & Ontology Informatics
|
°ÁÂ III (8¿ù 24ÀÏ / 9¿ù 5ÀÏ)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:20
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:20 ~ 9:40
|
Network Biology, Sequence, Pathway & Ontology Informatics
|
±èÁÖÇÑ ±³¼ö
|
9:40 ~ 10:30
|
Motif and Regulatory Sequence Analysis
- Motif Analysis
- miRNA Sequence Analysis
- Genome Sequence Analysis, Genome Browser
|
ÃÖ¼±½É ±³¼ö
(°¿ø´ë)
|
10:40 ~ 12:00
|
½Ç ½À I: TF and miRNA Target Prediction
Phylogenetic Analysis (ClustalW &
TreeView)
UCSC Genome Browser
|
Á¤ÈñÁØ, Á¶¿ë·¡
|
12:00 ~ 13:00
|
Áß ½Ä
|
13:00 ~ 13:50
|
Molecular Pathway & Gene Ontology
- Pathway Database and Tools
- Gene Ontology Database and Tools
- Biological Literature and Text Mining
|
±èÁöÈÆ ¹Ú»ç
(¼¿ïÀÇ´ë)
|
14:00 ~ 15:20
|
½Ç ½À II: Pathway, Gene Ontology Analysis
Biological Text Mining
|
¹ÚÀ¯¶û, ±èÁöÈÆ
|
15:30 ~ 16:20
|
Biological Network Analysis
- Characteristics of Biological Network
- Protein-protein Interaction Network Analysis
- Regulatory Network Analysis
|
À̱⿵ ±³¼ö
(¾ÆÁÖ´ë)
|
16:30 ~ 17:50
|
½Ç ½À III: Gene Regulatory Networks
Biological Network Properties
Network Visualization
|
ÇÑÇö¿í, À±¼±¹Î
|
DAY 4: SNPs, GWAS & CNVs: Informatics for Variations
|
°ÁÂ IV (8¿ù 25/31ÀÏ):
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:20
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:20 ~ 9:40
|
SNPs, GWAS & CNVs: Informatics for Variations
|
±èÁÖÇÑ ±³¼ö
|
9:40 ~ 10:30
|
SNP Data Analysis
- Linkage Disequilibrium Analysis
- Haplotype Estimation
- LD Blocking, Tagging SNPs Selection
|
¹ÚÁö¿Ï ±³¼ö
(ÇѸ²´ë)
|
10:40 ~ 12:00
|
½Ç ½À I: dbSNP Database
SNP Detection, PharmGKB
|
±èµµ±Õ, À±ÁØÈñ
|
12:00 ~ 13:00
|
Áß ½Ä
|
13:00 ~ 13:50
|
GWAS Data Analysis
- Genotype & Haplotype
- Rare Variant Analysis
- Runs of Homozygosity (ROH)
- Regression-based Testing
|
±è»ó¼ö ±³¼ö
(¼þ½Ç´ë)
|
14:00 ~ 15:20
|
½Ç ½À II: GWAS Data Processing
GWAS test with PLINK software
|
¹ÚÂùÈñ, Á¶¿ë·¡
|
15:30 ~ 16:20
|
CNV Data Analysis
- CNV in Diseases
- CNV Database / Data Processing
- Copy Number Detection
|
±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
16:30 ~ 17:50
|
½Ç ½À III: Identification of CNV Regions
CNV Association Testing
|
±èµµ±Õ, ¼Èñ¿ø
|
DAY 5: Metagenome & Epigenome, Basic Data Analysis
|
°ÁÂ V (8¿ù 26ÀÏ)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:20
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:20 ~ 9:40
|
Metagenome & Epigenome, Basic Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:40 ~ 10:30
|
Metagenome Data Analysis
- Whole Metagenome Sequencing
- Comprehensive Analyses of Metagenomics
Data
- Diversity Assessment of Biological
Communities
- Functional Analysis of Metagenome
|
õÁ¾½Ä ±³¼ö
(¼¿ï´ë)
|
10:40 ~ 12:00
|
½Ç ½À I: Data Management and Analysis
for Metagenomes
|
ÇÑÇö¿í, À̼ö¿¬
|
12:00 ~ 13:00
|
Áß ½Ä
|
13:00 ~ 13:50
|
Epigenome
- Epigenetic Mechanisms
- Epigenetics in Diseases
- Technologies for Epigenetic Research
- Applications in Epigenome
|
À±È«´ö ±³¼ö
(¼¿ïÀÇ´ë)
|
14:00 ~ 15:20
|
½Ç ½À II: Epigenome Databases
Epigenome Tools
|
³ª¿µÁö, À±¼±¹Î
|
15:30 ~ 16:20
|
Epigenome Data Analysis
- Computational Epigenetics
- DNA methylation Analysis
- Histone Modification Analysis
- Discovery of Epigenetic Biomarkers
|
³ëÅ¿µ ±³¼ö
(Æ÷Ç×°ø´ë)
|
16:30 ~ 17:50
|
½Ç ½À III: Visualization of DNA Methylation Data
Identification of Methylated Genes
|
Á¤Á¦±Õ, ¼Èñ¿ø
|
|
¿À½Ã´Â ±æ
±³À°Àå¼Ò |
¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28
±³ Åë | ÁöÇÏö 4È£¼± ÇýÈ¿ª 3¹ø Ãⱸ ÀÌ¿ë
|
|