ÀÏ ½Ã | 2012³â 8¿ù 20ÀÏ(¿ù)- 24ÀÏ(±Ý)
Àå ¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦                                                                  
ÁÖ °ü ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ (SBI-NCRC)
ÁÖ ÃÖ | ´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ 

Á¦3Â÷ Genome Data Analysis WorkshopÀ» °³ÃÖÇϸç

¾È³çÇϽʴϱî? 

À¯ Àüü µ¥ÀÌÅÍ ºÐ¼® ½Ç½ÀÀ» À§ÇÑ ÇÁ·Î±×·¥ °³¹ßÀ̶ó´Â È­µÎ¸¦ °¡Áö°í GDA WorkshopÀ» °³¼³ÇÑÁöµµ 1³â ¹Ý ÀÌ»óÀÇ ¼¼¿ùÀÌ Èê·¶½À´Ï´Ù. ¸» ±×´ë·Î ÀÌÁ¦ ¡®µ¥ÀÌÅÍ´Â »ý¼ºµÇ°Ô ¸¶·Ã¡¯ÀÎ ½Ã´ë°¡ µÇ¾ú½À´Ï´Ù. ±×µ¿¾È »ý¹°Á¤º¸Çаú À¯Àüü Á¤º¸ÇÐÀ» À§ÇÑ ¼ö¸¹Àº ±³À° ÇÁ·Î±×·¥ÀÌ ¿î¿µµÇ¾î ¿ÔÁö¸¸, ´Ù¾çÇÑ À¯Àüü µ¥ÀÌÅÍ ¸ðµÎ¸¦ ´Ù·ç´Â ¡®¿¹Á¦ Á߽ɡ¯ÀÇ ½Ç½À ±âȸ°¡ ÅξøÀÌ ºÎÁ·ÇÔÀ» ¾Æ½¬¿öÇÏ´ø Áß ¿ë±â¸¦ ³»¾î GDA WorkshopÀ» °³¼³ÇÑ ÈÄ ¸¹Àº ºÐµéÀÇ ¶ß°Å¿î °Ý·Á°¡ ÀÖ¾úÀ½¿¡ °¨»çµå¸³´Ï´Ù.

±×µ¿¾È ¡°¿ì¸®¿¡°Ôµµ °£´ÜÇÑ ½Ç½À¼­ ÇÑ ±ÇÀº ÇÊ¿äÇÏ´Ù¡±´Â »ý°¢À¸·Î ÀÚ·áµéÀ» ¸ð¾Æ 400ÂÊ ºÐ·®ÀÇ ´ÜÇົ ¡°À¯Àüü µ¥ÀÌÅÍ ºÐ¼®¡± À» ¹ü¹®»çÀÇ µµ¿òÀ¸·Î Ãâ°£Çϱ⵵ Çß½À´Ï´Ù. ¹ÙÀÌ¿À-Á¤º¸ÇÐ ºÐ¾ß´Â Á¤¸» ³î¶ø°Ô Ä¿Á³½À´Ï´Ù. À¯Àüü Á¤º¸ÇÐÀº ºü¸¥ ¼Óµµ·Î ÀÇÇÐÀû ÀÀ¿ë ¹æ¹ýÀ» µµÃâÇس»°í ÀÖ½À´Ï´Ù. ¸¹Àº ºÐµéÀÌ ¸ÂÃãÀÇÇÐÀ̶ó°í ¸»¾¸ÇϽô ºÐ¾ß°¡ ¹Ù·Î ÀÓ»ó µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇÇÐÀ̶ó°í »ý°¢ÇÕ´Ï´Ù. ±× ¾î´À ¶§º¸´Ùµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿Ã¹Ù¸¥ ÀÌÇØ°¡ Áß¿äÇÑ ½Ã´ë°¡ µÇ¾ú½À´Ï´Ù.

ÇÏ Áö¸¸ ¿©ÀüÈ÷ ´ëºÎºÐÀÇ »ý¸í°úÇÐÀÚ³ª ÀÇÇÐÀÚ¿¡°Ô ´ë±Ô¸ð ¹ÙÀÌ¿À À¯Àüü Á¤º¸µéÀº ´Ù·ç±âµµ Èûµì´Ï´Ù. ¹ÙÀÌ¿À Á¤º¸Ã³¸®³ª ºÐ¼®, ³ª¾Æ°¡ ½Ç¿ëÀû Çؼ®Àº ³Ñ¾î¼­±â Èûµç Å« À庮ÀÔ´Ï´Ù. Â÷¼¼´ë ½ÃÄö½Ì ±â¼úÀÇ ¹ßÀüÀº ÀúÀå¿ë·®À» ºÎÁ·ÇÏ°Ô ¸¸µé°í, ½ÉÁö¾î ³×Æ®¿öÅ©¸¦ ÅëÇÑ Àü¼ÛÀÌ »ç½Ç»ó ºÒ°¡´ÉÇؼ­, Çϵåµå¶óÀ̺꿡 ³ÖÀº µ¥ÀÌÅ͸¦ Äü ¼­ºñ½º·Î ÁÖ°í¹ÞÀº ½Ã´ë°¡ µÇ¾ú½À´Ï´Ù. Â÷¼¼´ë¸¦ ³Ñ¾î ´ÜÀÏ ºÐÀÚ ±â¼úÀ» ÀÌ¿ëÇÑ 3¼¼´ë³ª ³ª³ë Æ÷¾î¸¦ ÀÌ¿ëÇÑ 4¼¼´ë ½ÃÄö½Ì ±â¼úÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. ¾çÀû ÆØâ »Ó ¾Æ´Ï¶ó ¼­¿­Á¤º¸, ¹ßÇöÁ¤º¸, ¿¡ÇÇÁö³ð Á¤º¸, Á¤º¸Ç¥ÁØ ¹× ºÐÀÚ»ý¹°ÇÐ µ¥ÀÌÅͺ£À̽º¿Í Æнº¿þÀÌ, ¿ÂÅç·ÎÁö µî ¿À´Ã³¯ »ý¸í°úÇÐÀÚ³ª ÀÇÇÐÀÚ°¡ ½ÀµæÇØ¾ß ÇÒ Áö½ÄÀÇ ¸ñ·ÏÀº °è¼Ó ±æ¾îÁ®¸¸ °¡°í ÀÖ½À´Ï´Ù.

ÀÌ ·¯ÇÑ ¿¬±¸ÀÚµéÀÇ ½ÇÁúÀû ¹®Á¦ÇØ°á¿¡ µµ¿òÀÌ µÇ±â À§Çؼ­, ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнǰú ¼­¿ï´ë ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡Çٽɿ¬±¸¼¾ÅÍ¿¡¼­´Â 2012³âµµ Çϱ⠹æÇÐÀ» ¸Â¾Æ Ãʺ¸ÀÚµµ Á¢±ÙÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ À¯Àüü µ¥ÀÌÅÍ ºÐ¼®ÀÇ Àü¹ÝÀûÀÎ ±âÃÊÁö½ÄÀ» ¿¬½ÀÇÏ°í, ¿¬±¸ »Ó ¾Æ´Ï¶ó ¸ÂÃãÀÇ·á ¹× »ê¾÷¿¡ ÀÀ¿ë°¡´ÉÇÑ ³»¿ëÀ¸·Î GDA (Genome Data Analysis) ¿÷¼¥À» °³¼³Çß½À´Ï´Ù. º» ¿÷¼¥À» ÅëÇØ ½Ç¿ëÀûÀÎ À¯Àüü Á¤º¸ ºÐ¼®ÀÇ ¿ª·®À» °­È­ÇÏ´Â ±âȸ°¡ µÇ½Ã±â¸¦ ±â´ëÇÏ¸ç ¸¹Àº °ü½É°ú Âü¿©¸¦ ºÎŹµå¸³´Ï´Ù.

2012³â 6¿ù, ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå  ±è ÁÖ ÇÑ
 

  Á¦1Â÷ GDA Workshop: 2011³â 8¿ù 22ÀÏ~26ÀÏ, ¼­¿ïÀÇ´ë

  Á¦2Â÷ GDA Workshop: 2012³â 2¿ù 20ÀÏ~24ÀÏ, ¼­¿ïÀÇ´ë
  Á¦2Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
  
(1) micro-RNA µ¥ÀÌÅÍ ºÐ¼®
   (2) °³ÀÎÀ¯Àüü Çؼ®: Personal Genome Interpretation
   (3) ¾ÏÀ¯Àüü/Èñ±ÍÁúȯÀ¯Àüü µ¥ÀÌÅÍ ºÐ¼®

 º» 3Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÉ ¿¹Á¤ÀÌ´Ù.
 
 (1) Family-based ¿¢¼Ø½ÃÄö½Ì ºÐ¼®
   (2) TCGA (The Cancer Genome Atlas) µ¥ÀÌÅÍ ºÐ¼®

À¯Àüü µ¥ÀÌÅÍ ºÐ¼®
½Ç½À¼­ "À¯Àüü µ¥ÀÌÅÍ ºÐ¼®" Ãâ°£

°­Á ÀÏÁ¤   

        °­ÁÂÀÏÁ¤Àº ÁÖÃÖÃøÀÇ »çÁ¤¿¡ µû¶ó º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.

DAY 1: Advanced Microarray Data Analysis

           8¿ù 20ÀÏ(¿ù)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Advanced Microarray Data Analysis

±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

Gene Expression Analysis
- Normalization
- Differential Expression Analysis
- Classification Analysis

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: Bioconductor
          t-test, SAM, ANOVA, FDR
          LDA, DTs, SVMs

³ª¿µÁö, À̼ö¿¬

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Gene Ontology & Pathway Analysis
- Clustering Analysis
- Gene Ontology Analysis
- Pathway Enrichment Analysis

¼Õ°æ¾Æ ¹Ú»ç
(¼­¿ïÀÇ´ë)

14:10 ~ 15:30

½Ç ½À II: KNN, SOM, HC, PCA
           ArrayXPath, David

À̼ö¿¬, ¹é¼ö¿¬

15:40 ~ 16:30

Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Set Database
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction

Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

16:40 ~ 18:00

½Ç ½À III: Gene Set Enrichment Analysis
           Cox-PH, Log Rank Test

±èµµ±Õ, ¼­Èñ¿ø

 

DAY 2: Next Generation Sequencing & Personal Genome Data
          Analysis

          8¿ù 21ÀÏ(È­)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Next Generation Sequencing & Personal Genome Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

NGS Platforms and Applications
- Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications

ÀÌȯ¼® ¹Ú»ç
(¸¶Å©·ÎÁ¨)

10:50 ~ 12:10

½Ç ½À I: NGS Data Processing
         NGS Sequence Alignment
         NGS Visualization Tools

³ª¿µÁö, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Exome Sequencing Analysis
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation

±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)

14:10 ~ 15:30

½Ç ½À II: SNP and Indel Identification
          Variant Analysis and Annotation

¹ÚÂùÈñ, ¼­Èñ¿ø

15:40 ~ 16:30

Personal Genome Interpretation
- Phenotype Annotation
- Genetic Risk Prediction
- Healthcare Application

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

16:40 ~ 18:00

½Ç ½À III: Exome-seq Analysis for Disease
           Family Sequencing Data Processing
           Detection of Disease-causing Variations

¼­Èñ¿ø, ³ª¿µÁö

 

DAY 3: RNA-seq, Disease Genome, Epigenome Data Analysis

          8¿ù 22ÀÏ(¼ö)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

RNA-seq, Disease Genome, Epigenome Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

RNA-Seq Data Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- RNA-editing Analysis
- Differentially Expressed Genes Identification

Á¤Á¦±Õ ¹Ú»ç
(¼­¿ïÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: TopHat, Cufflinks
          RNA-Seq Gene Expression Analysis           Gene Fusion Analysis

¼­Èñ¿ø, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Cancer Disease Genome Informatics
- Cancer Genome Analysis
- Identifying Genomic Rearrangement
- Gene Fusion Analysis
- Rare Disease Analysis

±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)

14:10 ~ 15:30

½Ç ½À II: TCGA Data Analysis (Mutation, Survival,
           Methylation)
           Genomic Rearrangement, Rare Disease

À̼ö¿¬, ¹é¼ö¿¬

15:40 ~ 16:30

Epigenome Data Analysis
- Epigenetic Mechanisms
- DNA Methylation Analysis
- Histone Modification Analysis
- Discovery of Epigenetic Biomarkers

±è¼± ±³¼ö
(¼­¿ï´ë)

16:40 ~ 18:00

½Ç ½À III: Epigenome Tools & Databases            Visualization of DNA Methylation Data            Identification of Methylated Genes

ÇÑÇö¿í, Á¤¿ë

 

DAY 4: Network Biology, Sequence, Pathway and Ontology
          Informatics

          8¿ù 23ÀÏ(¸ñ)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Network Biology, Sequence, Pathway and Ontology Informatics

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

Motif and Regulatory Sequence Analysis
- Sequence Motif Analysis
- Genome Sequence Analysis
- Genome Browser

Á¤ÇØ¿µ ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø)

10:50 ~ 12:10

½Ç ½À I: TF Target Prediction for Metagenomes
          Phylogenetic Analysis (ClustalW &
          TreeView)
          UCSC Genome Browser

Á¶¿ë·¡, Á¤¿ë

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Molecular Pathway & Gene Ontology
- Biopathway Analysis
- Gene Ontology & Pathway Database and Tools
- Biological Literature and Text Mining

±è¾ç¼® ±³¼ö
(°æÈñ´ë)

14:10 ~ 15:30

½Ç ½À II: Pathway, Gene Ontology Analysis           BioLattice, Pubgene
          Biological Text Mining

Á¤¿ë, ¹é¼ö¿¬

15:40 ~ 16:30

Biological Network Analysis
- Characteristics of Biological Network
- Protein-protein Interaction Network Analysis
- Regulatory Network Analysis

À̱⿵ ±³¼ö
(¾ÆÁÖ´ë)

16:40 ~ 18:00

½Ç ½À III: Network Analysis (Cytoscape, igraph)            Properties of Interaction
           Network Visualization

ÇÑÇö¿í, ÀÓÀçÇö

 

DAY 5: SNPs, GWAS & CNVs: Informatics for Variations

          8¿ù 24ÀÏ(±Ý)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

SNPs, GWAS & CNVs: Informatics for Variations

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

SNP Data Analysis
- Linkage Disequilibrium Analysis
- Haplotype Estimation
- LD Blocking, Tagging SNPs Selection

¹ÚÁö¿Ï ±³¼ö
(ÇѸ²ÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: Haplotype Estimation, LD Blocking
          dbSNP Database
          Pharmacogenetic Analysis (PharmGKB)

À±ÁØÈñ, ±èµµ±Õ

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

GWAS Data Analysis
- Genotype & Haplotype
- Rare Variant Analysis
- Runs of Homozygosity (ROH)
- Regression-based Testing

ÀÌ俵 ±³¼ö
(¼þ½Ç´ë)

14:10 ~ 15:30

½Ç ½À II: GWAS Catalog
          GWAS test with PLINK software

¹ÚÂùÈñ, Á¶¿ë·¡

15:40 ~ 16:30

CNV Data Analysis
- CNV in Diseases
- CNV Database
- CNV Data Processing
- Copy Number Detection

±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

16:40 ~ 18:00

½Ç ½À III: Identification of CNV Regions
           CNV Association Testing

±èµµ±Õ, ¼­Èñ¿ø

 

 

¿À½Ã´Â ±æ

±³À°Àå¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼­¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28 

±³      Åë | ÁöÇÏö 4È£¼± ÇýÈ­¿ª 3¹ø Ãⱸ ÀÌ¿ë