ÀÏ ½Ã | 2013³â 2¿ù 18ÀÏ(¿ù)- 22ÀÏ(±Ý)
Àå ¼Ò | ¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦
ÁÖ °ü | ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ (SBI-NCRC)
ÁÖ ÃÖ |
´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ
Á¦4Â÷ Genome Data Analysis
WorkshopÀ» °³ÃÖÇϸç
¾È³çÇϽʴϱî?
Genome Data Analysis¶ó´Â À̸§À¸·Î À¯Àüü µ¥ÀÌÅÍ ºÐ¼® ½Ç½À ¿÷¼¥À» ½ÃÀÛÇÑÁö 2³âÀǼ¼¿ùÀÌ Èê·¶½À´Ï´Ù. ¿äÁîÀ½ ºòµ¥ÀÌÅͶó´Â ¸»ÀÌ ÈµÎ°¡ µÇ¾ú½À´Ï´Ù. ¼±Áø±¹¿¡¼´Â Çϵå¿þ¾îÀÇ ½Ã´ë¿¡¼ ¼ÒÇÁÆ®¿þ¾îÀÇ ½Ã´ë¸¦ Áö³ª µ¥ÀÌÅÍÀÇ ½Ã´ë°¡ ¿À°í ÀÖ´Ù°í ÇÕ´Ï´Ù. ±×°£ ´Ù¾çÇÑ Bioinformatics ¿÷¼¥ÀÌ ÀÖ¾úÁö¸¸, ÀúÈñ GDA´Â ¡®Data¡¯¶ó´Â ´Ü¾î°¡ Áß½ÉÀÌ µÈ °Íó·³ ´Ù¾çÇÑ À¯Àüü µ¥ÀÌÅÍ ¸ðµÎ¸¦ Á÷Á¢ ´Ù·ç¾î º¸´Â ¡®¿¹Á¦ Á߽ɡ¯ÀÇ ½Ç½À ¿÷¼¥À¸·Î Á¦°øµË´Ï´Ù.
¹ÙÀÌ¿À-Á¤º¸ÇÐ ºÐ¾ß´Â Á¤¸» ³î¶ø°Ô Ä¿Á³°í, Ãֱ٠ȵΠÁß ÇϳªÀÎ ¡°¸ÂÃãÀÇÇС±µµ ¹Ù·Î ÀÓ»ó µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ µ¥ÀÌÅÍ ÀÇÇÐÀ̶ó°í º¼ ¼ö ÀÖ½À´Ï´Ù.. ±× ¾î´À ¶§º¸´Ùµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿Ã¹Ù¸¥ ÀÌÇØ°¡ Áß¿äÇÑ ½Ã´ë°¡ µÇ¾úÀ¸¸ç, µ¥ÀÌÅÍÀÇ ¾çÀû ÆØâ »Ó ¾Æ´Ï¶ó ¼¿Á¤º¸, ¹ßÇöÁ¤º¸, ¿¡ÇÇÁö³ð Á¤º¸, Á¤º¸Ç¥ÁØ ¹× ºÐÀÚ»ý¹°ÇÐ µ¥ÀÌÅͺ£À̽º, ¿ÂÅç·ÎÁö µî ¿ì¸®°¡ ´Ù·ç¾î¾ß ÇÒ »ý¸íÀÇ°úÇÐ µ¥ÀÌÅÍÀÇ ¸ñ·ÏÀº °è¼Ó ±æ¾îÁ®¸¸ °¡°í ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ¿¬±¸ÀÚµéÀÇ ½ÇÁúÀû ¹®Á¦ÇØ°á¿¡ µµ¿òÀÌ µÇ±â À§Çؼ, ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнǰú ¼¿ï´ë ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡Çٽɿ¬±¸¼¾ÅÍ¿¡¼´Â 2013³âµµ µ¿±â ¹æÇÐÀ» ¸Â¾Æ Ãʺ¸ÀÚµµ Á¢±ÙÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ À¯Àüü µ¥ÀÌÅÍ ºÐ¼®ÀÇ Àü¹ÝÀûÀÎ ±âÃÊÁö½ÄÀ» ¿¬½ÀÇÏ°í, ¿¬±¸ »Ó ¾Æ´Ï¶ó ¸ÂÃãÀÇ·á ¹× »ê¾÷¿¡ ÀÀ¿ë°¡´ÉÇÑ ³»¿ëÀ¸·Î GDA (Genome Data Analysis) ¿÷¼¥À» °³¼³Çß½À´Ï´Ù. º» ¿÷¼¥À» ÅëÇØ ½Ç¿ëÀûÀÎ À¯Àüü Á¤º¸ ºÐ¼®ÀÇ ¿ª·®À» °ÈÇÏ´Â ±âȸ°¡ µÇ½Ã±â¸¦ ±â´ëÇÏ¸ç ¸¹Àº °ü½É°ú Âü¿©¸¦ ºÎŹµå¸³´Ï´Ù.
2013³â 1¿ù, ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå ±è ÁÖ ÇÑ
¡¡
|
|
Á¦1Â÷ GDA Workshop: 2011³â 8¿ù 22ÀÏ~26ÀÏ, ¼¿ïÀÇ´ë
Á¦2Â÷ GDA Workshop: 2012³â 2¿ù 20ÀÏ~24ÀÏ, ¼¿ïÀÇ´ë
Á¦2Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù. (1) micro-RNA µ¥ÀÌÅÍ ºÐ¼®
(2) °³ÀÎÀ¯Àüü Çؼ®: Personal Genome Interpretation
(3) ¾ÏÀ¯Àüü/Èñ±ÍÁúȯÀ¯Àüü µ¥ÀÌÅÍ ºÐ¼®
Á¦ 3Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù. (1) Family-based ¿¢¼Ø½ÃÄö½Ì ºÐ¼® (2) TCGA (The Cancer Genome Atlas) µ¥ÀÌÅÍ ºÐ¼®
º» 4Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÉ ¿¹Á¤ÀÌ´Ù. (1) eQTL µ¥ÀÌÅÍ ºÐ¼® (2) PheWAS & EWAS µ¥ÀÌÅÍ ºÐ¼®
|
½Ç½À¼ "À¯Àüü µ¥ÀÌÅÍ ºÐ¼®" Ãâ°£
|
|
°Á ÀÏÁ¤
°ÁÂÀÏÁ¤Àº ÁÖÃÖÃøÀÇ »çÁ¤¿¡ µû¶ó º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.
DAY 1: Advanced Microarray Data Analysis
|
2¿ù 18ÀÏ(¿ù)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:00 ~ 9:00
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:00 ~ 9:20
|
Advanced Microarray Data Analysis |
±èÁÖÇÑ ±³¼ö
|
9:20 ~ 10:10
|
Gene Expression Analysis
- Normalization
- Differential Expression Analysis
- Classification Analysis
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
10:20 ~ 11:40
|
½Ç ½À I: Bioconductor
t-test, SAM, ANOVA, FDR
LDA, DTs, SVMs
|
³ª¿µÁö, À̼ö¿¬
|
11:40 ~ 12:40
|
Áß ½Ä
|
12:40 ~ 13:30
|
Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Set Database
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction
|
Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
13:50 ~ 15:00
|
½Ç ½À II: Gene Set Enrichment Analysis
Cox-PH, Log Rank Test ArrayXPath, David
|
±èµµ±Õ, ¼Èñ¿ø
|
15:10 ~ 16:00
|
Clustering & eQTL analysis of gene expression data
- Clustering Analysis
- Cis- and trans-expression QTL
- eQTL hotspots
- Connection to GWAS
|
¼Õ°æ¾Æ ¹Ú»ç
(¼¿ïÀÇ´ë)
|
16:10 ~ 17:30
|
½Ç ½À III: KNN, SOM, HC, PCA
eQTL resources
|
À̼ö¿¬, ¹é¼ö¿¬
|
DAY 2: Next Generation Sequencing & Personal Genome Data
Analysis
|
2¿ù 19ÀÏ(È)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Next Generation Sequencing & Personal Genome Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
NGS Platforms and Applications
- Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications
|
±èÁöÈÆ ¹Ú»ç
(¸¶Å©·ÎÁ¨)
|
10:50 ~ 12:10
|
½Ç ½À I: NGS Data Processing
NGS Sequence Alignment
NGS Visualization Tools
|
³ª¿µÁö, ÀÓÀçÇö
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Exome Sequencing Analysis
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation
|
±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø KOBIC)
|
14:10 ~ 15:30
|
½Ç ½À II: SNP and Indel Identification
Variant Analysis and Annotation
|
¹ÚÂùÈñ, ¼Èñ¿ø
|
15:40 ~ 16:30
|
Personal Genome Interpretation
- Phenotype Annotation
- Genetic Risk Prediction
- Healthcare Application
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
16:40 ~ 18:00
|
½Ç ½À III: Exome-seq Analysis for Disease
Family Sequencing Data Processing
Detection of Disease-causing Variations
|
¼Èñ¿ø, ³ª¿µÁö
|
DAY 3: RNA-seq, Disease Genome Data Analysis
|
2¿ù 20ÀÏ(¼ö)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
RNA-seq, Disease Genome Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
RNA-Seq Data Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- RNA-editing Analysis
- Differentially Expressed Genes Identification
|
Á¤Á¦±Õ ¹Ú»ç
(¼¿ïÀÇ´ë)
|
10:50 ~ 12:10
|
½Ç ½À I: TopHat, Cufflinks
RNA-Seq
Gene Expression Analysis
Gene Fusion
Analysis
|
¼Èñ¿ø, ÀÓÀçÇö
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Cancer Disease Genome Informatics
- Cancer Genome Analysis
- Identifying Genomic Rearrangement
- Gene Fusion Analysis
- Rare Disease Analysis
|
±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)
|
14:10 ~ 15:30
|
½Ç ½À II: TCGA Data Analysis
Cancer Genome Analysis (Mutation
Plotting, Network Analysis, Visualization,
Mutation, Methylation, Survival Analysis)
|
±èµµ±Õ, ÀÓÀçÇö
|
15:40 ~ 16:30
|
Genome-wide Copy Number Variation
Analysis
- CNV in Diseases
- CNV Database
- CNV Data Processing
- Copy Number Detection
|
±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
16:40 ~ 18:00
|
½Ç
½À III: Cancer Genomic Rearrangement
Rare Disease Analysis
Identification of CNV Regions
|
À̼ö¿¬, ¹é¼ö¿¬
|
DAY 4: Network Biology, Sequence, Pathway and Ontology
Informatics
|
2¿ù 21ÀÏ(¸ñ)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Network Biology, Sequence, Pathway and Ontology Informatics
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
Motif and Regulatory Sequence Analysis
- Sequence Motif Analysis
- Genome Sequence Analysis
- Genome Browser
|
Á¤ÇØ¿µ ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø)
|
10:50 ~ 12:10
|
½Ç ½À I: TF Target Prediction for Metagenomes
Phylogenetic Analysis (ClustalW &
TreeView)
UCSC Genome Browser
|
Á¶¿ë·¡, Á¤¿ë
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Molecular Pathway & Gene Ontology
- Biopathway Analysis
- Gene Ontology & Pathway Database and Tools
- Biological Literature and Text Mining
|
¡¡
|
14:10 ~ 15:30
|
½Ç ½À II: Pathway, Gene Ontology Analysis BioLattice, Pubgene
Biological Text Mining
|
À±ÁØÈñ, ¹é¼ö¿¬
|
15:40 ~ 16:30
|
Biological Network Analysis
- Characteristics of Biological Network
- Protein-protein Interaction Network Analysis
- Regulatory Network Analysis
|
À̱⿵ ±³¼ö
(¾ÆÁÖ´ë)
|
16:40 ~ 18:00
|
½Ç
½À III: Network Analysis (Cytoscape, igraph)
Properties
of Interaction
Network Visualization
|
¼Èñ¿ø, ÀÓÀçÇö
|
DAY 5: SNPs, GWAS, PheWAS & EWAS: Informatics for Variations
|
2¿ù 22ÀÏ(±Ý)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
SNPs, GWAS,
PheWAS and EWAS: Informatics for Variations
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
SNP Data Analysis
- Linkage Disequilibrium Analysis
- Haplotype Estimation
- LD Blocking, Tagging SNPs Selection
|
¹ÚÁö¿Ï ±³¼ö
(ÇѸ²ÀÇ´ë)
|
10:50 ~ 12:10
|
½Ç ½À I: Haplotype Estimation, LD Blocking
dbSNP Database
Pharmacogenetic Analysis (PharmGKB)
|
À±ÁØÈñ, ±èµµ±Õ
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
GWAS Data Analysis
- Genotype & Haplotype
- Rare Variant Analysis
- Runs of Homozygosity (ROH)
- Regression-based Testing
|
ÀÌ俵 ±³¼ö
(¼þ½Ç´ë)
|
14:10 ~ 15:30
|
½Ç ½À II: GWAS Catalog
GWAS test with PLINK software
|
¹ÚÂùÈñ, Á¶¿ë·¡
|
15:40 ~ 16:30
|
PheWAS & EWAS Data Analysis
- Beyond GWAS
- Phenome-Wide Association Study (PheWAS)
- Environment-Wide Association Study (EWAS)
|
±èµµ±Õ ¹Ú»ç
(¼¿ïÀÇ´ë)
|
16:40 ~ 18:00
|
½Ç ½À III: PheWAS analysis
PheWAS view
Synthesis view
Phenogram
|
±èµµ±Õ, ¼Èñ¿ø
|
¡¡
|
¡¡
¿À½Ã´Â ±æ
±³À°Àå¼Ò |
¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28
±³ Åë | ÁöÇÏö 4È£¼± ÇýÈ¿ª 3¹ø Ãⱸ ÀÌ¿ë
|
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
|