¡¡

ÀÏ ½Ã | 2013³â 2¿ù 18ÀÏ(¿ù)- 22ÀÏ(±Ý)
Àå ¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦                                                                  
ÁÖ °ü ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ (SBI-NCRC)
ÁÖ ÃÖ | ´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ 

Á¦4Â÷ Genome Data Analysis WorkshopÀ» °³ÃÖÇϸç

¾È³çÇϽʴϱî? 

Genome Data Analysis¶ó´Â À̸§À¸·Î À¯Àüü µ¥ÀÌÅÍ ºÐ¼® ½Ç½À ¿÷¼¥À» ½ÃÀÛÇÑÁö 2³âÀǼ¼¿ùÀÌ Èê·¶½À´Ï´Ù. ¿äÁîÀ½ ºòµ¥ÀÌÅͶó´Â ¸»ÀÌ È­µÎ°¡ µÇ¾ú½À´Ï´Ù. ¼±Áø±¹¿¡¼­´Â Çϵå¿þ¾îÀÇ ½Ã´ë¿¡¼­ ¼ÒÇÁÆ®¿þ¾îÀÇ ½Ã´ë¸¦ Áö³ª µ¥ÀÌÅÍÀÇ ½Ã´ë°¡ ¿À°í ÀÖ´Ù°í ÇÕ´Ï´Ù. ±×°£ ´Ù¾çÇÑ Bioinformatics ¿÷¼¥ÀÌ ÀÖ¾úÁö¸¸, ÀúÈñ GDA´Â ¡®Data¡¯¶ó´Â ´Ü¾î°¡ Áß½ÉÀÌ µÈ °Íó·³ ´Ù¾çÇÑ À¯Àüü µ¥ÀÌÅÍ ¸ðµÎ¸¦ Á÷Á¢ ´Ù·ç¾î º¸´Â ¡®¿¹Á¦ Á߽ɡ¯ÀÇ ½Ç½À ¿÷¼¥À¸·Î Á¦°øµË´Ï´Ù.

¹ÙÀÌ¿À-Á¤º¸ÇÐ ºÐ¾ß´Â Á¤¸» ³î¶ø°Ô Ä¿Á³°í, ÃÖ±Ù È­µÎ Áß ÇϳªÀÎ ¡°¸ÂÃãÀÇÇС±µµ ¹Ù·Î ÀÓ»ó µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ µ¥ÀÌÅÍ ÀÇÇÐÀ̶ó°í º¼ ¼ö ÀÖ½À´Ï´Ù.. ±× ¾î´À ¶§º¸´Ùµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿Ã¹Ù¸¥ ÀÌÇØ°¡ Áß¿äÇÑ ½Ã´ë°¡ µÇ¾úÀ¸¸ç, µ¥ÀÌÅÍÀÇ ¾çÀû ÆØâ »Ó ¾Æ´Ï¶ó ¼­¿­Á¤º¸, ¹ßÇöÁ¤º¸, ¿¡ÇÇÁö³ð Á¤º¸, Á¤º¸Ç¥ÁØ ¹× ºÐÀÚ»ý¹°ÇÐ µ¥ÀÌÅͺ£À̽º, ¿ÂÅç·ÎÁö µî ¿ì¸®°¡ ´Ù·ç¾î¾ß ÇÒ »ý¸íÀÇ°úÇÐ µ¥ÀÌÅÍÀÇ ¸ñ·ÏÀº °è¼Ó ±æ¾îÁ®¸¸ °¡°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ¿¬±¸ÀÚµéÀÇ ½ÇÁúÀû ¹®Á¦ÇØ°á¿¡ µµ¿òÀÌ µÇ±â À§Çؼ­, ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнǰú ¼­¿ï´ë ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ±¹°¡Çٽɿ¬±¸¼¾ÅÍ¿¡¼­´Â 2013³âµµ µ¿±â ¹æÇÐÀ» ¸Â¾Æ Ãʺ¸ÀÚµµ Á¢±ÙÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ À¯Àüü µ¥ÀÌÅÍ ºÐ¼®ÀÇ Àü¹ÝÀûÀÎ ±âÃÊÁö½ÄÀ» ¿¬½ÀÇÏ°í, ¿¬±¸ »Ó ¾Æ´Ï¶ó ¸ÂÃãÀÇ·á ¹× »ê¾÷¿¡ ÀÀ¿ë°¡´ÉÇÑ ³»¿ëÀ¸·Î GDA (Genome Data Analysis) ¿÷¼¥À» °³¼³Çß½À´Ï´Ù. º» ¿÷¼¥À» ÅëÇØ ½Ç¿ëÀûÀÎ À¯Àüü Á¤º¸ ºÐ¼®ÀÇ ¿ª·®À» °­È­ÇÏ´Â ±âȸ°¡ µÇ½Ã±â¸¦ ±â´ëÇÏ¸ç ¸¹Àº °ü½É°ú Âü¿©¸¦ ºÎŹµå¸³´Ï´Ù.

2013³â 1¿ù, ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇÀå  ±è ÁÖ ÇÑ
¡¡

  Á¦1Â÷ GDA Workshop: 2011³â 8¿ù 22ÀÏ~26ÀÏ, ¼­¿ïÀÇ´ë

  Á¦2Â÷ GDA Workshop: 2012³â 2¿ù 20ÀÏ~24ÀÏ, ¼­¿ïÀÇ´ë
  Á¦2Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
  
(1) micro-RNA µ¥ÀÌÅÍ ºÐ¼®
   (2) °³ÀÎÀ¯Àüü Çؼ®: Personal Genome Interpretation
   (3) ¾ÏÀ¯Àüü/Èñ±ÍÁúȯÀ¯Àüü µ¥ÀÌÅÍ ºÐ¼®

   Á¦ 3Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù.
 
 (1) Family-based ¿¢¼Ø½ÃÄö½Ì ºÐ¼®
   (2) TCGA (The Cancer Genome Atlas) µ¥ÀÌÅÍ ºÐ¼®

   º» 4Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÉ ¿¹Á¤ÀÌ´Ù.
 
 (1) eQTL µ¥ÀÌÅÍ ºÐ¼®
   (2)
PheWAS & EWAS µ¥ÀÌÅÍ ºÐ¼®

À¯Àüü µ¥ÀÌÅÍ ºÐ¼®
½Ç½À¼­ "À¯Àüü µ¥ÀÌÅÍ ºÐ¼®" Ãâ°£

°­Á ÀÏÁ¤   

        °­ÁÂÀÏÁ¤Àº ÁÖÃÖÃøÀÇ »çÁ¤¿¡ µû¶ó º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.

DAY 1: Advanced Microarray Data Analysis

           2¿ù 18ÀÏ(¿ù)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:00 ~ 9:00

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:00 ~ 9:20

Advanced Microarray Data Analysis

±èÁÖÇÑ ±³¼ö

9:20 ~ 10:10

Gene Expression Analysis
- Normalization
- Differential Expression Analysis
- Classification Analysis

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

10:20 ~ 11:40

½Ç ½À I: Bioconductor
          t-test, SAM, ANOVA, FDR
          LDA, DTs, SVMs

³ª¿µÁö, À̼ö¿¬

11:40 ~ 12:40

  Áß  ½Ä

12:40 ~ 13:30

Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Set Database
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction

Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

13:50 ~ 15:00

½Ç ½À II: Gene Set Enrichment Analysis
           Cox-PH, Log Rank Test            ArrayXPath, David

±èµµ±Õ, ¼­Èñ¿ø

15:10 ~ 16:00

Clustering & eQTL analysis of gene expression data
- Clustering Analysis
- Cis- and trans-expression QTL
- eQTL hotspots

- Connection to GWAS

¼Õ°æ¾Æ ¹Ú»ç
(¼­¿ïÀÇ´ë)

16:10 ~ 17:30

½Ç ½À III: KNN, SOM, HC, PCA
           eQTL resources

À̼ö¿¬, ¹é¼ö¿¬

 

DAY 2: Next Generation Sequencing & Personal Genome Data
          Analysis

          2¿ù 19ÀÏ(È­)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Next Generation Sequencing & Personal Genome Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

NGS Platforms and Applications
- Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications

±èÁöÈÆ ¹Ú»ç
(¸¶Å©·ÎÁ¨)

10:50 ~ 12:10

½Ç ½À I: NGS Data Processing
         NGS Sequence Alignment
         NGS Visualization Tools

³ª¿µÁö, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Exome Sequencing Analysis
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation

±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)

14:10 ~ 15:30

½Ç ½À II: SNP and Indel Identification
          Variant Analysis and Annotation

¹ÚÂùÈñ, ¼­Èñ¿ø

15:40 ~ 16:30

Personal Genome Interpretation
- Phenotype Annotation
- Genetic Risk Prediction
- Healthcare Application

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

16:40 ~ 18:00

½Ç ½À III: Exome-seq Analysis for Disease
           Family Sequencing Data Processing
           Detection of Disease-causing Variations

¼­Èñ¿ø, ³ª¿µÁö

 

DAY 3: RNA-seq, Disease Genome Data Analysis

          2¿ù 20ÀÏ(¼ö)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

RNA-seq, Disease Genome Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

RNA-Seq Data Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- RNA-editing Analysis
- Differentially Expressed Genes Identification

Á¤Á¦±Õ ¹Ú»ç
(¼­¿ïÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: TopHat, Cufflinks
          RNA-Seq Gene Expression Analysis           Gene Fusion Analysis

¼­Èñ¿ø, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Cancer Disease Genome Informatics
- Cancer Genome Analysis
- Identifying Genomic Rearrangement
- Gene Fusion Analysis
- Rare Disease Analysis

±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø
KOBIC)

14:10 ~ 15:30

½Ç ½À II: TCGA Data Analysis
           Cancer Genome Analysis (Mutation
           Plotting, Network Analysis, Visualization,
           Mutation, Methylation, Survival Analysis)

±èµµ±Õ, ÀÓÀçÇö

15:40 ~ 16:30

Genome-wide Copy Number Variation Analysis
- CNV in Diseases
- CNV Database
- CNV Data Processing
- Copy Number Detection

±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

16:40 ~ 18:00

½Ç ½À III: Cancer Genomic Rearrangement
           Rare Disease Analysis
           Identification of CNV Regions

À̼ö¿¬, ¹é¼ö¿¬

 

DAY 4: Network Biology, Sequence, Pathway and Ontology
          Informatics

          2¿ù 21ÀÏ(¸ñ)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Network Biology, Sequence, Pathway and Ontology Informatics

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

Motif and Regulatory Sequence Analysis
- Sequence Motif Analysis
- Genome Sequence Analysis
- Genome Browser

Á¤ÇØ¿µ ¹Ú»ç
(»ý¸í°øÇבּ¸¿ø)

10:50 ~ 12:10

½Ç ½À I: TF Target Prediction for Metagenomes
          Phylogenetic Analysis (ClustalW &
          TreeView)
          UCSC Genome Browser

Á¶¿ë·¡, Á¤¿ë

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Molecular Pathway & Gene Ontology
- Biopathway Analysis
- Gene Ontology & Pathway Database and Tools
- Biological Literature and Text Mining

¡¡

14:10 ~ 15:30

½Ç ½À II: Pathway, Gene Ontology Analysis           BioLattice, Pubgene
          Biological Text Mining

À±ÁØÈñ, ¹é¼ö¿¬

15:40 ~ 16:30

Biological Network Analysis
- Characteristics of Biological Network
- Protein-protein Interaction Network Analysis
- Regulatory Network Analysis

À̱⿵ ±³¼ö
(¾ÆÁÖ´ë)

16:40 ~ 18:00

½Ç ½À III: Network Analysis (Cytoscape, igraph)            Properties of Interaction
           Network Visualization

¼­Èñ¿ø, ÀÓÀçÇö

 

DAY 5: SNPs, GWAS, PheWAS & EWAS: Informatics for Variations

          2¿ù 22ÀÏ(±Ý)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

SNPs, GWAS, PheWAS and EWAS: Informatics for Variations

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

SNP Data Analysis
- Linkage Disequilibrium Analysis
- Haplotype Estimation
- LD Blocking, Tagging SNPs Selection

¹ÚÁö¿Ï ±³¼ö
(ÇѸ²ÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: Haplotype Estimation, LD Blocking
          dbSNP Database
          Pharmacogenetic Analysis (PharmGKB)

À±ÁØÈñ, ±èµµ±Õ

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

GWAS Data Analysis
- Genotype & Haplotype
- Rare Variant Analysis
- Runs of Homozygosity (ROH)
- Regression-based Testing

ÀÌ俵 ±³¼ö
(¼þ½Ç´ë)

14:10 ~ 15:30

½Ç ½À II: GWAS Catalog
          GWAS test with PLINK software

¹ÚÂùÈñ, Á¶¿ë·¡

15:40 ~ 16:30

PheWAS & EWAS Data Analysis
- Beyond GWAS
- Phenome-Wide Association Study (PheWAS)
- Environment-Wide Association Study (EWAS)

±èµµ±Õ ¹Ú»ç
(¼­¿ïÀÇ´ë)

16:40 ~ 18:00

½Ç ½À III: PheWAS analysis
           PheWAS view
           Synthesis view
           Phenogram
 

±èµµ±Õ, ¼­Èñ¿ø

¡¡

¡¡

¿À½Ã´Â ±æ

±³À°Àå¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼­¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28 

±³      Åë | ÁöÇÏö 4È£¼± ÇýÈ­¿ª 3¹ø Ãⱸ ÀÌ¿ë

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡