ÀÏ ½Ã | 2014³â 2¿ù 24ÀÏ(¿ù)- 28ÀÏ(±Ý)
Àå ¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦

ÁÖ °ü | ¼­¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ (SBI-NCRC)
ÁÖ ÃÖ | ´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ

Á¦6Â÷ Genome Data Analysis WorkshopÀ» °³ÃÖÇϸç

  Á¦1Â÷ GDA Workshop: 2011³â 8¿ù 22ÀÏ~26ÀÏ, ¼­¿ïÀÇ´ë

  Á¦2Â÷ GDA Workshop: 2012³â 2¿ù 20ÀÏ~24ÀÏ, ¼­¿ïÀÇ´ë
  Á¦2Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
  
(1) micro-RNA µ¥ÀÌÅÍ ºÐ¼®
   (2) °³ÀÎÀ¯Àüü Çؼ®: Personal Genome Interpretation
   (3) ¾ÏÀ¯Àüü/Èñ±ÍÁúȯÀ¯Àüü µ¥ÀÌÅÍ ºÐ¼®

  Á¦3Â÷ GDA Workshop: 2012³â 8¿ù 20ÀÏ~24ÀÏ, ¼­¿ïÀÇ´ë
   Á¦ 3Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù.
 
 (1) Family-based ¿¢¼Ø½ÃÄö½Ì ºÐ¼®
   (2) TCGA (The Cancer Genome Atlas) µ¥ÀÌÅÍ ºÐ¼®

  Á¦4Â÷ GDA Workshop: 2013³â 2¿ù 18ÀÏ~22ÀÏ, ¼­¿ïÀÇ´ë
    4Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù.
 
 (1) eQTL µ¥ÀÌÅÍ ºÐ¼®
   (2)
PheWAS & EWAS µ¥ÀÌÅÍ ºÐ¼®

  Á¦5Â÷ GDA Workshop: 2013³â 8¿ù 26ÀÏ~30ÀÏ, ¼­¿ïÀÇ´ë
  Á¦5Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
  
(1) ½ÃÄö½º ·¹º§ Àü»çü ºÐ¼®: Isoforms, Alternative Splicing, RNA-editing, and Fusion Gene
   (2) °³ÀÎÀ¯Àüü Çؼ®À» À§ÇÑ Áö½Ä/µ¥ÀÌÅͱâ¹Ý ÀÚ¿ø ¼Ò°³¿Í À¯ÀüÀû À§Çè ¿¹Ãø ºÐ¼®
   (3) Post-GWAS: EMR µ¥ÀÌÅÍ¿Í Áúº´ ¿¬°ü ºÐ¼®

  Á¦6Â÷ ¿÷¼¥¿¡¼­´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÉ ¿¹Á¤ÀÌ´Ù.
 
 (1) Human Genome Data Analysis using ENCODE
   (2) Cancer Genome Data Analysis using TCGA

À¯Àüü µ¥ÀÌÅÍ ºÐ¼®
½Ç½À¼­ "À¯Àüü µ¥ÀÌÅÍ ºÐ¼®" Ãâ°£

°­Á ÀÏÁ¤   

        °­ÁÂÀÏÁ¤Àº ÁÖÃÖÃøÀÇ »çÁ¤¿¡ µû¶ó º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.

DAY 1: Advanced Microarray Data Analysis

           2¿ù 24ÀÏ(¿ù)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Advanced Microarray Data Analysis

±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

Gene Expression Analysis
- Normalization
- Differential Expression Analysis
- Classification Analysis

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: Bioconductor
          t-test, SAM, ANOVA, FDR
          LDA, DTs, SVM

À̼ö¿¬, ¹ÚÁöÇý

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Clustering and eQTL Analysis of Gene Expression Data
- Clustering Analysis
- Cis- and trans-expression eQTL
- eQTL hotspots
- Connection to GWAS

¼Õ°æ¾Æ ±³¼ö
(¾ÆÁÖ´ë)

14:10 ~ 15:30

½Ç ½À II: KNN, SOM, HC, PCA
           Identify eQTL hotspot
           eQTL resource

ÀÓÀçÇö, ¾È¼±ÁÖ

15:40 ~ 16:30

Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Ontology & Pathway Analysis
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction

Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

16:40 ~ 18:00

½Ç ½À III: Gene Set Enrichment Analysis
           Cox-PH, Log Rank Test
           David, ArrayXPath

±è±âÅÂ, ¹é¼ö¿¬

 

DAY 2: Next Generation Sequencing & Personal Genome Data Analysis

          2¿ù 25ÀÏ(È­)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Next Generation Sequencing & Personal Genome Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

NGS Platforms and Applications
- Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications

±èÁöÈÆ ¹Ú»ç
(·¦Áö³ë¹Í½º)

10:50 ~ 12:10

½Ç ½À I: NGS Data Processing
         NGS Data Format Converting
         NGS Visualization Tools

¼­Èñ¿ø, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

NGS Data Analysis
- Sequence Alignment Algorithms
- Whole Genome and Exome Data Analysis
- Variation Detection and Reference Genome

ÃÖ¹«¸² ±³¼ö
(¼­¿ïÀÇ´ë)

14:10 ~ 15:30

½Ç ½À II: Exome Sequencing Alignment
          SNP and Indel Identification
          Variation Filtering

¹ÚÂùÈñ, ¼­Èñ¿ø

15:40 ~ 16:30

Personal Genome Interpretation
- Phenotype Annotation
- Genetic Risk Prediction
- Healthcare Application

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

16:40 ~ 18:00

½Ç ½À III: SNP Prioritization
            Genetic Risk Prediction methods
            Resources for Personal Genome Interpretation
            (dbGAP, PheGeni, SNPedia, PhenoDB)

À̼ö¿¬, ¹ÚÁöÇý

 

DAY 3: RNA-seq Data Analysis

          2¿ù 26ÀÏ(¼ö)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

RNA-seq Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

RNA-Seq Expression Profile Analysis
- Read Alignment Methods
- Expression Quantification Strategy
- Differentially Expressed Genes Identification
- Expression Profile Analysis

Á¤Á¦±Õ ¹Ú»ç
(»ï¼ºÀ¯Àüü¿¬±¸¼Ò)

10:50 ~ 12:10

½Ç ½À I: Read alignment with TopHat,
          Expression Quantification with Cufflinks
          RNA-Seq Gene Expression Analysis

ÀÓÀçÇö, ¼­Èñ¿ø

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Sequence-level Transcriptome Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- RNA-editing Analysis
- New/Fusion Gene Identification

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

14:10 ~ 15:30

½Ç ½À II: Alternative Splicing Identification
           RNA-DNA Difference (RDD) Analysis
           RNA Editing Site Annotation

À̼ö¿¬, ¹é¼ö¿¬

15:40 ~ 16:30

Non-coding RNAs in RNA-Seq Data
- miRNA Expression Profiling
- miRNA Target Gene Prediction
- Non-coding RNA Characterization

³²Áø¿ì ±³¼ö
(ÇѾç´ë)

16:40 ~ 18:00

½Ç ½À III: miRNA Sequencing Data Process
           miRNA Expression Profiling
           non-coding RNA Resources

¼­Èñ¿ø, ÀÓ¿µ±Õ

 

DAY 4: Exome Sequencing and Cancer Genome Bioinformatics

          2¿ù 27ÀÏ(¸ñ)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Exome Sequencing and Cancer Genome Bioinformatics

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

Exome Sequencing and Rare Disease
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation

±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿øKOBIC)

10:50 ~ 12:10

½Ç ½À I: Trio-Exome-Sequencing Data Analysis
          Known Variant Filtering
          Detection of Disease-causing Variations
          Disease Gene Prioritization

¼­Èñ¿ø, ±è±âÅÂ

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

Cancer Genome Bioinformatics
- Cancer Genome Analysis
- Identifying Genomic Rearrangement
- Gene Fusion Analysis
- Survival Analysis

¼Û¿µ¼ö ±³¼ö
(ÇѾçÀÇ´ë)

14:10 ~ 15:30

½Ç ½À II: Fusion Gene Analysis from RNA-seq
          Network and Survival Analysis
          Resources for Cancer Research:
          cBioPortal, COSMIC, CCLE, OncoMap

À̼ö¿¬, ¹é¼ö¿¬

15:40 ~ 16:30

Copy Number and Genomic Rearrangement
- CNA Identification in Cancer Genome
- Copy Number Data Processing
- Genomic Rearrangement

±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)

16:40 ~ 18:00

½Ç ½À III: Cancer Genomic Rearrangement            Identification of CNV Regions
           CNV Database

ÀÓÀçÇö, ÀÓ¿µ±Õ

 

DAY 5: Translational Bioinformatics: Thousands of Public Data Analysis

          2¿ù 28ÀÏ(±Ý)

½Ã°£

  ÁÖ  Á¦

°­ »ç

8:30 ~ 9:30

µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡

9:30 ~ 9:50

Translational Bioinformatics: Thousands of Public Data Analysis

 ±èÁÖÇÑ ±³¼ö

9:50 ~ 10:40

The Cancer Genome Atlas (TCGA) Project and Cancer Genome Research
- TCGA Introduction
- TCGA Data and Scientific Findings
- Impact of TCGA and Future

±èÅ¹Π±³¼ö
(Ä«Å縯ÀÇ´ë)

10:50 ~ 12:10

½Ç ½À I: TCGA Somatic Mutation Landscape
          Find Significantly Mutated Genes
          Identify Driver Groups of Mutations

±è±âÅÂ, ÀÓÀçÇö

12:10 ~ 13:10

  Áß  ½Ä

13:10 ~ 14:00

The Encyclopedia of DNA Elements (ENCODE) and Human Genome Research
- ENCODE Overview
- New Insights into the Human Genome
- Gencode project and UCSC Genome Browser

È«°æ¿ø ¹Ú»ç
(Áúº´°ü¸®º»ºÎ)

14:10 ~ 15:30

½Ç ½À II: Explore ENCODE Data at UCSC Genome Browser
          Identify Transcription Factor Binding Loci from ChIP-seq Data
          Detection of Regulatory SNPs

ÀÓÀçÇö, ÀÓ¿µ±Õ

15:40 ~ 16:30

Genome-Phenome-EMR Integrative Analysis
- EMR and beyond GWAS
- Phenome-Wide Association Study (PheWAS)
- Environment-Wide Association Study (EWAS)

±èÁÖÇÑ ±³¼ö
(¼­¿ïÀÇ´ë)

16:40 ~ 18:00

½Ç ½À III: Phenotype Extraction from eMERGE Network Data
           Integrating Genetics: EMR-based Phe-WAS
           PheWAS View for Visualization
 

ÀÌ°èÈ­, ¼­Èñ¿ø

¡¡

¡á µî ·Ï


°­ÀÇ ´ë»ó: À¯Àüü µ¥ÀÌÅÍ ¹× ÀÓ»ó µ¥ÀÌÅÍ ºÐ¼®°ú ÀÀ¿ë¿¡ °ü½É ÀÖ´Â BT, IT, ȤÀº ÀÇÇÐ ºÐ¾ß Àü°øÀÚ

¡¡

¿À½Ã´Â ±æ

±³À°Àå¼Ò | ¼­¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼­¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28 

±³      Åë | ÁöÇÏö 4È£¼± ÇýÈ­¿ª 2¹ø Ãⱸ·Î ³ª¿Í¼­ Ⱦ´Üº¸µµ ÀÌ¿ë (3¹øÃⱸ °ø»çÁß)

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡

¡¡