ÀÏ ½Ã
| 2014³â 2¿ù 24ÀÏ(¿ù)- 28ÀÏ(±Ý)
Àå ¼Ò | ¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦
ÁÖ °ü
|
¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ, ½Ã½ºÅÛ ¹ÙÀÌ¿À Á¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ
(SBI-NCRC)
ÁÖ ÃÖ |
´ëÇÑÀÇ·áÁ¤º¸ÇÐȸ, Çѱ¹»ý¹°Á¤º¸½Ã½ºÅÛ»ý¹°ÇÐȸ
Á¦6Â÷ Genome Data Analysis WorkshopÀ» °³ÃÖÇϸç
Á¦1Â÷ GDA Workshop:
2011³â 8¿ù 22ÀÏ~26ÀÏ, ¼¿ïÀÇ´ë
Á¦2Â÷ GDA Workshop:
2012³â 2¿ù 20ÀÏ~24ÀÏ, ¼¿ïÀÇ´ë
Á¦2Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
(1) micro-RNA µ¥ÀÌÅÍ ºÐ¼®
(2) °³ÀÎÀ¯Àüü Çؼ®: Personal Genome Interpretation
(3) ¾ÏÀ¯Àüü/Èñ±ÍÁúȯÀ¯Àüü µ¥ÀÌÅÍ ºÐ¼®
Á¦3Â÷ GDA Workshop: 2012³â 8¿ù 20ÀÏ~24ÀÏ, ¼¿ïÀÇ´ë
Á¦ 3Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù. (1) Family-based ¿¢¼Ø½ÃÄö½Ì ºÐ¼® (2) TCGA (The Cancer Genome Atlas) µ¥ÀÌÅÍ ºÐ¼®
Á¦4Â÷ GDA Workshop: 2013³â 2¿ù 18ÀÏ~22ÀÏ, ¼¿ïÀÇ´ë 4Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÇ¾ú´Ù. (1) eQTL µ¥ÀÌÅÍ ºÐ¼® (2) PheWAS & EWAS µ¥ÀÌÅÍ ºÐ¼®
Á¦5Â÷ GDA Workshop:
2013³â 8¿ù 26ÀÏ~30ÀÏ, ¼¿ïÀÇ´ë
Á¦5Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº »õ·Î¿î ½Ç½À¸ðµâ 3°³°¡ Ãß°¡ µÇ¾ú´Ù.
(1) ½ÃÄö½º ·¹º§ Àü»çü ºÐ¼®: Isoforms, Alternative Splicing, RNA-editing, and Fusion Gene
(2) °³ÀÎÀ¯Àüü Çؼ®À» À§ÇÑ Áö½Ä/µ¥ÀÌÅͱâ¹Ý ÀÚ¿ø ¼Ò°³¿Í À¯ÀüÀû À§Çè ¿¹Ãø ºÐ¼®
(3) Post-GWAS: EMR µ¥ÀÌÅÍ¿Í Áúº´ ¿¬°ü ºÐ¼®
Á¦6Â÷ ¿÷¼¥¿¡¼´Â ´ÙÀ½°ú °°Àº 2°³ÀÇ ½Ç½À¸ðµâÀÌ Ãß°¡µÉ ¿¹Á¤ÀÌ´Ù.
(1) Human Genome Data Analysis using ENCODE
(2) Cancer Genome Data Analysis using TCGA
|
½Ç½À¼ "À¯Àüü µ¥ÀÌÅÍ ºÐ¼®" Ãâ°£
|
|
°Á ÀÏÁ¤
°ÁÂÀÏÁ¤Àº ÁÖÃÖÃøÀÇ »çÁ¤¿¡ µû¶ó º¯°æµÉ ¼ö ÀÖ½À´Ï´Ù.
DAY 1: Advanced Microarray Data Analysis
|
2¿ù 24ÀÏ(¿ù)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Advanced Microarray Data Analysis |
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
Gene Expression Analysis
- Normalization
- Differential Expression Analysis
- Classification Analysis
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
10:50 ~ 12:10
|
½Ç ½À I: Bioconductor
t-test, SAM, ANOVA, FDR
LDA, DTs, SVM
|
À̼ö¿¬, ¹ÚÁöÇý
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Clustering and eQTL Analysis of Gene Expression Data
- Clustering Analysis
- Cis- and trans-expression eQTL
- eQTL hotspots
- Connection to GWAS
|
¼Õ°æ¾Æ ±³¼ö
(¾ÆÁÖ´ë)
|
14:10 ~ 15:30
|
½Ç ½À II: KNN, SOM, HC, PCA
Identify eQTL hotspot
eQTL resource
|
ÀÓÀçÇö, ¾È¼±ÁÖ
|
15:40 ~ 16:30
|
Gene-set Approaches & Prognostic Subgroup Prediction
- Gene Ontology & Pathway Analysis
- Gene Set Enrichment Analysis
- Prognostic Subgroup Prediction
|
Á¶¼º¹ü ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
16:40 ~ 18:00
|
½Ç ½À III: Gene Set Enrichment Analysis
Cox-PH, Log Rank Test
David, ArrayXPath
|
±è±âÅÂ, ¹é¼ö¿¬
|
DAY 2: Next Generation Sequencing & Personal Genome Data Analysis
|
2¿ù 25ÀÏ(È)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Next Generation Sequencing & Personal Genome Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
NGS Platforms and Applications
- Current NGS Platforms
- NGS Data Formats
- NGS Data Analysis Technologies
- NGS Applications
|
±èÁöÈÆ ¹Ú»ç
(·¦Áö³ë¹Í½º)
|
10:50 ~ 12:10
|
½Ç ½À I: NGS Data Processing
NGS Data Format Converting
NGS Visualization Tools
|
¼Èñ¿ø, ÀÓÀçÇö
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
NGS Data Analysis
- Sequence Alignment Algorithms
- Whole Genome and Exome Data Analysis
- Variation Detection and Reference Genome
|
ÃÖ¹«¸² ±³¼ö
(¼¿ïÀÇ´ë)
|
14:10 ~ 15:30
|
½Ç ½À II: Exome Sequencing Alignment
SNP and Indel Identification
Variation Filtering
|
¹ÚÂùÈñ, ¼Èñ¿ø
|
15:40 ~ 16:30
|
Personal Genome Interpretation
- Phenotype Annotation
- Genetic Risk Prediction
- Healthcare Application
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
16:40 ~ 18:00
|
½Ç ½À III: SNP Prioritization
Genetic Risk Prediction methods
Resources for Personal Genome Interpretation
(dbGAP, PheGeni, SNPedia, PhenoDB)
|
À̼ö¿¬, ¹ÚÁöÇý
|
DAY 3: RNA-seq Data Analysis
|
2¿ù 26ÀÏ(¼ö)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
RNA-seq Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
RNA-Seq Expression Profile Analysis
- Read Alignment Methods
- Expression Quantification Strategy
- Differentially Expressed Genes Identification
- Expression Profile Analysis
|
Á¤Á¦±Õ ¹Ú»ç
(»ï¼ºÀ¯Àüü¿¬±¸¼Ò)
|
10:50 ~ 12:10
|
½Ç ½À I: Read alignment with TopHat,
Expression Quantification with Cufflinks
RNA-Seq Gene Expression Analysis
|
ÀÓÀçÇö, ¼Èñ¿ø
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Sequence-level Transcriptome Analysis
- Novel Transcript Discovery
- Alternative Splicing Identification
- RNA-editing Analysis
- New/Fusion Gene Identification
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
14:10 ~ 15:30
|
½Ç ½À II: Alternative Splicing Identification
RNA-DNA Difference (RDD) Analysis
RNA Editing Site Annotation
|
À̼ö¿¬, ¹é¼ö¿¬
|
15:40 ~ 16:30
|
Non-coding RNAs in RNA-Seq Data
- miRNA Expression Profiling
- miRNA Target Gene Prediction
- Non-coding RNA Characterization
|
³²Áø¿ì ±³¼ö
(ÇѾç´ë)
|
16:40 ~ 18:00
|
½Ç ½À III: miRNA Sequencing Data Process
miRNA Expression Profiling
non-coding RNA Resources
|
¼Èñ¿ø, ÀÓ¿µ±Õ
|
DAY 4: Exome Sequencing and Cancer Genome Bioinformatics
|
2¿ù 27ÀÏ(¸ñ)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Exome Sequencing and Cancer Genome Bioinformatics
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
Exome Sequencing and Rare Disease
- Exome Sequencing Data
- Exome Sequencing of Rare Disease
- Variant Analysis and Annotation
|
±è³²½Å ¹Ú»ç
(»ý¸í°øÇבּ¸¿øKOBIC)
|
10:50 ~ 12:10
|
½Ç ½À I: Trio-Exome-Sequencing Data Analysis
Known Variant Filtering
Detection of Disease-causing Variations
Disease Gene Prioritization
|
¼Èñ¿ø, ±è±âÅÂ
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
Cancer Genome Bioinformatics
- Cancer Genome Analysis
- Identifying Genomic Rearrangement
- Gene Fusion Analysis
- Survival Analysis
|
¼Û¿µ¼ö ±³¼ö
(ÇѾçÀÇ´ë)
|
14:10 ~ 15:30
|
½Ç ½À II: Fusion Gene Analysis from RNA-seq
Network and Survival Analysis
Resources for Cancer Research:
cBioPortal, COSMIC, CCLE, OncoMap
|
À̼ö¿¬, ¹é¼ö¿¬
|
15:40 ~ 16:30
|
Copy Number and Genomic Rearrangement
- CNA Identification in Cancer Genome
- Copy Number Data Processing
- Genomic Rearrangement
|
±èºÀÁ¶ ¹Ú»ç
(±¹¸³º¸°Ç¿¬±¸¿ø)
|
16:40 ~ 18:00
|
½Ç ½À III: Cancer Genomic Rearrangement
Identification of CNV Regions
CNV Database
|
ÀÓÀçÇö, ÀÓ¿µ±Õ
|
DAY 5: Translational Bioinformatics: Thousands of Public Data Analysis
|
2¿ù 28ÀÏ(±Ý)
|
½Ã°£
|
ÁÖ Á¦
|
° »ç
|
8:30 ~ 9:30
|
µî·Ï ¹× »çÀü ÇÁ·Î±×·¥ ¼³Ä¡ |
9:30 ~ 9:50
|
Translational Bioinformatics: Thousands of Public Data Analysis
|
±èÁÖÇÑ ±³¼ö
|
9:50 ~ 10:40
|
The Cancer Genome Atlas (TCGA) Project and Cancer Genome Research
- TCGA Introduction
- TCGA Data and Scientific Findings
- Impact of TCGA and Future
|
±èÅ¹Π±³¼ö
(Ä«Å縯ÀÇ´ë)
|
10:50 ~ 12:10
|
½Ç ½À I: TCGA Somatic Mutation Landscape
Find Significantly Mutated Genes
Identify Driver Groups of Mutations
|
±è±âÅÂ, ÀÓÀçÇö
|
12:10 ~ 13:10
|
Áß ½Ä
|
13:10 ~ 14:00
|
The Encyclopedia of DNA Elements (ENCODE) and Human Genome Research
- ENCODE Overview
- New Insights into the Human Genome
- Gencode project and UCSC Genome Browser
|
È«°æ¿ø ¹Ú»ç
(Áúº´°ü¸®º»ºÎ)
|
14:10 ~ 15:30
|
½Ç ½À II: Explore ENCODE Data at UCSC Genome Browser
Identify Transcription Factor Binding Loci from ChIP-seq Data
Detection of Regulatory SNPs
|
ÀÓÀçÇö, ÀÓ¿µ±Õ
|
15:40 ~ 16:30
|
Genome-Phenome-EMR Integrative Analysis
- EMR and beyond GWAS
- Phenome-Wide Association Study (PheWAS)
- Environment-Wide Association Study (EWAS)
|
±èÁÖÇÑ ±³¼ö
(¼¿ïÀÇ´ë)
|
16:40 ~ 18:00
|
½Ç ½À III: Phenotype Extraction from eMERGE Network Data
Integrating Genetics: EMR-based Phe-WAS
PheWAS View for Visualization
|
ÀÌ°èÈ, ¼Èñ¿ø
|
¡¡
|
¡á µî ·Ï
°ÀÇ ´ë»ó: À¯Àüü µ¥ÀÌÅÍ ¹× ÀÓ»ó µ¥ÀÌÅÍ ºÐ¼®°ú ÀÀ¿ë¿¡ °ü½É ÀÖ´Â
BT, IT, ȤÀº ÀÇÇÐ ºÐ¾ß Àü°øÀÚ
¡¡
¿À½Ã´Â ±æ
±³À°Àå¼Ò |
¼¿ïÀÇ´ë µ¿Ã¢È¸°ü 3Ãþ °¡ÃµÈ¦, ¼¿ï½Ã Á¾·Î±¸ ¿¬°Çµ¿ 28
±³ Åë | ÁöÇÏö 4È£¼± ÇýÈ¿ª 2¹ø Ãⱸ·Î ³ª¿Í¼ Ⱦ´Üº¸µµ ÀÌ¿ë (3¹øÃⱸ °ø»çÁß)
|
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
|